Suppr超能文献

双层厚度对AlO/ZnO纳米层压板的形态、光学和电学性质的影响。

Effects of Bilayer Thickness on the Morphological, Optical, and Electrical Properties of AlO/ZnO Nanolaminates.

作者信息

Li Da-Hai, Zhai Chen-Hui, Zhou Wen-Chao, Huang Qing-Hua, Wang Lei, Zheng Hua, Chen Lei, Chen Xin, Zhang Rong-Jun

机构信息

Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.

State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.

出版信息

Nanoscale Res Lett. 2017 Oct 11;12(1):563. doi: 10.1186/s11671-017-2328-x.

Abstract

This report mainly focuses on the investigation of morphological, optical, and electrical properties of AlO/ZnO nanolaminates regulated by varying bilayer thicknesses. The growth mechanism of nanolaminates based on atomic layer deposition and Al penetration into ZnO layer are proposed. The surface roughness of AlO/ZnO nanolaminates can be controlled due to the smooth effect of interposed AlO layers. The thickness, optical constants, and bandgap information of nanolaminates have been investigated by spectroscopic ellipsometry measurement. The band gap and absorption edge have a blue shift with decreasing the bilayer thickness on account of the Burstein-Moss effect, the quantum confinement effect and the characteristic evolution of nanolaminates. Also, the carrier concentrations and resistivities are found to be modified considerably among various bilayer thicknesses. The modulations of these properties are vital for AlO/ZnO nanolaminates to be used as transparent conductor and high resistance layer in optoelectronic applications.

摘要

本报告主要聚焦于研究通过改变双层厚度来调控的AlO/ZnO纳米层压板的形态、光学和电学性质。提出了基于原子层沉积的纳米层压板生长机制以及Al向ZnO层的渗透情况。由于插入的AlO层的平滑作用,AlO/ZnO纳米层压板的表面粗糙度得以控制。通过光谱椭偏测量研究了纳米层压板的厚度、光学常数和带隙信息。由于Burstein-Moss效应、量子限制效应以及纳米层压板的特性演变,随着双层厚度的减小,带隙和吸收边发生蓝移。此外,发现在不同的双层厚度中,载流子浓度和电阻率有相当大的变化。这些性质的调制对于AlO/ZnO纳米层压板在光电子应用中用作透明导体和高电阻层至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7b/5636778/7db43a87de9b/11671_2017_2328_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验