Bohórquez Carolina, Bakkali Hicham, Delgado Juan J, Blanco Eduardo, Herrera Manuel, Domínguez Manuel
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), 22860 Ensenada, Baja California, Mexico.
Departamento de Física de la Materia Condensada, Universidad de Cádiz, Campus de Puerto Real, E11519 Puerto Real, Spain.
ACS Appl Electron Mater. 2022 Mar 22;4(3):925-935. doi: 10.1021/acsaelm.1c01026. Epub 2022 Feb 24.
This work reports the ellipsometry analysis of atomic layer deposition (ALD) films of ZnO doped with Zr to determine parameters like free carrier concentration and mobility. Thin films of zinc oxide (ZnO) and Zr-doped ZnO of thickness ∼100 nm were prepared by atomic layer deposition on sapphire, SiO/Si(100), and Si(100) substrates. Variable-angle spectroscopic ellipsometry was used to study their optical properties in the 0.5-3.5 eV spectral range. The optical constants were accurately obtained using a model that combines Drude and Tauc-Lorentz oscillators with Bruggeman effective medium approximations, allowing the inclusion of a roughness layer in the optical model. The effect of Zr doping (ca. 1.9-4.4 atom %) was then investigated in both as-prepared samples and samples annealed in the temperature range of 100-300 °C. All of the films exhibited good optical transparency (ca. 70-90% in the visible region). For doping levels below 2.7 atom %, the real part of the dielectric permittivity reveals a semiconductor-to-metal transition in the near-infrared (NIR) region, as the permittivity goes from positive to negative. Besides, the plasma energy increases with increasing Zr concentration, and both resistivity and carrier concentration exhibit slightly parabolic behaviors, with a minimum of ∼1.5 × 10 Ω cm and a maximum of 2.4 × 10 cm, respectively, at the same critical Zr concentration (2.7 atom %). In contrast, the carrier mobility decreases rapidly from 76.0 to 19.2 cm/(V s) with increasing Zr content, while conductivities and carrier mobilities worsen when the annealing temperature increases, probably due to the segregation of ZnO crystals. Finally, the optical band gap is very stable, revealing its interesting independence of substrate composition and annealing temperature, as it collapses to a single master curve when band gap energy is plotted versus free carrier concentration, following the Burstein-Moss effect. Overall, the Zr-doped ZnO films studied here would be a highly desirable system for developing thermally stable transparent conductive oxides (TCOs).
这项工作报告了对掺锆氧化锌(ZnO)原子层沉积(ALD)薄膜的椭偏仪分析,以确定诸如自由载流子浓度和迁移率等参数。通过在蓝宝石、SiO/Si(100)和Si(100)衬底上进行原子层沉积,制备了厚度约为100 nm的氧化锌(ZnO)薄膜和掺锆ZnO薄膜。使用可变角度光谱椭偏仪研究了它们在0.5 - 3.5 eV光谱范围内的光学性质。通过将德鲁德(Drude)和陶克 - 洛伦兹(Tauc - Lorentz)振荡器与布鲁格曼(Bruggeman)有效介质近似相结合的模型,准确获得了光学常数,该模型允许在光学模型中包含粗糙度层。然后研究了在制备态样品以及在100 - 300 °C温度范围内退火的样品中锆掺杂(约1.9 - 4.4原子%)的影响。所有薄膜在可见光区域都表现出良好的光学透明度(约70 - 90%)。对于低于2.7原子%的掺杂水平,随着介电常数从正值变为负值,介电常数的实部在近红外(NIR)区域显示出从半导体到金属的转变。此外,等离子体能量随着锆浓度的增加而增加,并且电阻率和载流子浓度都呈现出略微的抛物线行为,在相同的临界锆浓度(2.7原子%)下,最小值分别约为1.5×10 Ω·cm和最大值为2.4×10 cm。相反,随着锆含量的增加,载流子迁移率从76.0迅速降至19.2 cm²/(V·s),而当退火温度升高时,电导率和载流子迁移率会变差,这可能是由于ZnO晶体的偏析所致。最后,光学带隙非常稳定,表明其对衬底成分和退火温度具有有趣的独立性,因为当根据伯斯坦 - 莫斯(Burstein - Moss)效应将带隙能量与自由载流子浓度作图时,它会汇聚成一条单一的主曲线。总体而言,这里研究的掺锆ZnO薄膜将是开发热稳定透明导电氧化物(TCO)的非常理想的体系。