Bai Jiawei, Sun Yifei, Schrack Jennifer A, Crainiceanu Ciprian M, Wang Mei-Cheng
Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.
Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.
Biometrics. 2018 Jun;74(2):744-752. doi: 10.1111/biom.12781. Epub 2017 Oct 10.
Recent advances of wearable computing technology have allowed continuous health monitoring in large observational studies and clinical trials. Examples of data collected by wearable devices include minute-by-minute physical activity proxies measured by accelerometers or heart rate. The analysis of data generated by wearable devices has so far been quite limited to crude summaries, for example, the mean activity count over the day. To better utilize the full data and account for the dynamics of activity level in the time domain, we introduce a two-stage regression model for the minute-by-minute physical activity proxy data. The model allows for both time-varying parameters and time-invariant parameters, which helps capture both the transition dynamics between active/inactive periods (Stage 1) and the activity intensity dynamics during active periods (Stage 2). The approach extends methods developed for zero-inflated Poisson data to account for the high-dimensionality and time-dependence of the high density data generated by wearable devices. Methods are motivated by and applied to the Baltimore Longitudinal Study of Aging.
可穿戴计算技术的最新进展使得在大型观察性研究和临床试验中能够进行连续的健康监测。可穿戴设备收集的数据示例包括通过加速度计或心率测量的每分钟身体活动指标。到目前为止,对可穿戴设备生成的数据的分析相当有限,仅限于粗略的汇总,例如一天中的平均活动计数。为了更好地利用完整数据并考虑时域中活动水平的动态变化,我们针对每分钟身体活动指标数据引入了一个两阶段回归模型。该模型允许时变参数和时不变参数,这有助于捕捉活跃/不活跃时段之间的转换动态(第一阶段)以及活跃时段内的活动强度动态(第二阶段)。该方法扩展了为零膨胀泊松数据开发的方法,以考虑可穿戴设备生成的高密度数据的高维度性和时间依赖性。这些方法的灵感来源于巴尔的摩纵向衰老研究,并应用于该研究。