Suppr超能文献

可穿戴设备数据的两阶段模型。

A two-stage model for wearable device data.

作者信息

Bai Jiawei, Sun Yifei, Schrack Jennifer A, Crainiceanu Ciprian M, Wang Mei-Cheng

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.

Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.

出版信息

Biometrics. 2018 Jun;74(2):744-752. doi: 10.1111/biom.12781. Epub 2017 Oct 10.

Abstract

Recent advances of wearable computing technology have allowed continuous health monitoring in large observational studies and clinical trials. Examples of data collected by wearable devices include minute-by-minute physical activity proxies measured by accelerometers or heart rate. The analysis of data generated by wearable devices has so far been quite limited to crude summaries, for example, the mean activity count over the day. To better utilize the full data and account for the dynamics of activity level in the time domain, we introduce a two-stage regression model for the minute-by-minute physical activity proxy data. The model allows for both time-varying parameters and time-invariant parameters, which helps capture both the transition dynamics between active/inactive periods (Stage 1) and the activity intensity dynamics during active periods (Stage 2). The approach extends methods developed for zero-inflated Poisson data to account for the high-dimensionality and time-dependence of the high density data generated by wearable devices. Methods are motivated by and applied to the Baltimore Longitudinal Study of Aging.

摘要

可穿戴计算技术的最新进展使得在大型观察性研究和临床试验中能够进行连续的健康监测。可穿戴设备收集的数据示例包括通过加速度计或心率测量的每分钟身体活动指标。到目前为止,对可穿戴设备生成的数据的分析相当有限,仅限于粗略的汇总,例如一天中的平均活动计数。为了更好地利用完整数据并考虑时域中活动水平的动态变化,我们针对每分钟身体活动指标数据引入了一个两阶段回归模型。该模型允许时变参数和时不变参数,这有助于捕捉活跃/不活跃时段之间的转换动态(第一阶段)以及活跃时段内的活动强度动态(第二阶段)。该方法扩展了为零膨胀泊松数据开发的方法,以考虑可穿戴设备生成的高密度数据的高维度性和时间依赖性。这些方法的灵感来源于巴尔的摩纵向衰老研究,并应用于该研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/694d/5893449/74d8bcc95a60/nihms904373f1.jpg

相似文献

1
A two-stage model for wearable device data.可穿戴设备数据的两阶段模型。
Biometrics. 2018 Jun;74(2):744-752. doi: 10.1111/biom.12781. Epub 2017 Oct 10.
2
Missing value imputation for physical activity data measured by accelerometer.通过加速度计测量的身体活动数据的缺失值插补
Stat Methods Med Res. 2018 Feb;27(2):490-506. doi: 10.1177/0962280216633248. Epub 2016 Mar 17.
3
On the security of consumer wearable devices in the Internet of Things.物联网中消费者可穿戴设备的安全性
PLoS One. 2018 Apr 18;13(4):e0195487. doi: 10.1371/journal.pone.0195487. eCollection 2018.
5
Biosensing in multiple sclerosis.多发性硬化症中的生物传感
Expert Rev Med Devices. 2017 Nov;14(11):901-912. doi: 10.1080/17434440.2017.1388162. Epub 2017 Oct 23.

引用本文的文献

7
Analyzing wearable device data using marked point processes.使用标记点过程分析可穿戴设备数据。
Biometrics. 2021 Mar;77(1):54-66. doi: 10.1111/biom.13269. Epub 2020 May 6.

本文引用的文献

7
Structured functional principal component analysis.结构化功能主成分分析
Biometrics. 2015 Mar;71(1):247-257. doi: 10.1111/biom.12236. Epub 2014 Oct 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验