Suppr超能文献

运用零膨胀混合泊松分布模型进行日常和每周的中高强度身体活动建模。

Modeling daily and weekly moderate and vigorous physical activity using zero-inflated mixture Poisson distribution.

机构信息

Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA.

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Stat Med. 2020 Dec 30;39(30):4687-4703. doi: 10.1002/sim.8748. Epub 2020 Sep 18.

Abstract

Recently developed accelerometer devices have been used in large epidemiological studies for continuous and objective monitoring of physical activities. Typically, physical movements are summarized as minutes in light, moderate, and vigorous physical activities in each wearing day. Because of preponderance of zeros, zero-inflated distributions have been used for modeling the daily moderate or higher levels of physical activity. Yet, these models do not fully account for variations in daily physical activity and cannot be extended to model weekly physical activity explicitly, while the weekly physical activity is considered as an indicator for a subject's average level of physical activity. To overcome these limitations, we propose to use a zero-inflated Poisson mixture distribution that can model daily and weekly physical activity in same family of mixture distributions. Under this method, the likelihood of an inactive day and the amount of exercise in an active day are simultaneously modeled by a joint random effects model to incorporate heterogeneity across participants. If needed, the method has the flexibility to include an additional random effect to address extra variations in daily physical activity. Maximum likelihood estimation can be obtained through Gaussian quadrature technique, which is implemented conveniently in an R package GLMMadaptive. Method performances are examined using simulation studies. The method is applied to data from the Hispanic Community Health Study/Study of Latinos to examine the relationship between physical activity and BMI groups and within a participant the difference in physical activity between weekends and weekdays.

摘要

最近开发的加速度计设备已在大型流行病学研究中用于连续和客观地监测身体活动。通常,身体运动在每个佩戴日中被总结为轻度、中度和剧烈身体活动的分钟数。由于零值的优势,零膨胀分布已被用于建模日常中度或更高水平的身体活动。然而,这些模型并不能完全解释日常身体活动的变化,也不能扩展到明确地对每周身体活动进行建模,而每周身体活动被认为是受试者平均身体活动水平的指标。为了克服这些限制,我们建议使用零膨胀泊松混合分布,该分布可以在相同的混合分布族中对日常和每周的身体活动进行建模。在这种方法下,通过联合随机效应模型同时对非活跃日的可能性和活跃日的运动量进行建模,以纳入参与者之间的异质性。如果需要,该方法具有灵活性,可以包括额外的随机效应来解决日常身体活动中的额外变化。最大似然估计可以通过高斯求积技术获得,该技术在 R 包 GLMMadaptive 中方便地实现。使用模拟研究来检查方法的性能。该方法应用于西班牙裔社区健康研究/拉丁裔研究的数据,以检查身体活动与 BMI 组之间的关系,并在参与者内部检查周末和工作日之间身体活动的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/448f/8521567/a25c617906af/nihms-1674606-f0001.jpg

相似文献

3
Testing modified zeros for Poisson regression models.检验泊松回归模型的修正零。
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3123-3141. doi: 10.1177/0962280218796253. Epub 2018 Sep 10.
7
A test of inflated zeros for Poisson regression models.泊松回归模型中零膨胀的检验。
Stat Methods Med Res. 2019 Apr;28(4):1157-1169. doi: 10.1177/0962280217749991. Epub 2017 Dec 28.
10
Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana.加纳 COVID-19 死亡人数的零膨胀时间序列模型。
J Environ Public Health. 2021 Apr 30;2021:5543977. doi: 10.1155/2021/5543977. eCollection 2021.

本文引用的文献

2
The Physical Activity Guidelines for Americans.美国人体育活动指南。
JAMA. 2018 Nov 20;320(19):2020-2028. doi: 10.1001/jama.2018.14854.
4
A two-stage model for wearable device data.可穿戴设备数据的两阶段模型。
Biometrics. 2018 Jun;74(2):744-752. doi: 10.1111/biom.12781. Epub 2017 Oct 10.
7
A Marginalized Zero-inflated Poisson Regression Model with Random Effects.一种具有随机效应的边缘化零膨胀泊松回归模型。
J R Stat Soc Ser C Appl Stat. 2015 Nov;64(5):815-830. doi: 10.1111/rssc.12104. Epub 2015 Apr 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验