Suppr超能文献

使用标记点过程分析可穿戴设备数据。

Analyzing wearable device data using marked point processes.

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.

出版信息

Biometrics. 2021 Mar;77(1):54-66. doi: 10.1111/biom.13269. Epub 2020 May 6.

Abstract

This paper introduces two sets of measures as exploratory tools to study physical activity patterns: active-to-sedentary/sedentary-to-active rate function (ASRF/SARF) and active/sedentary rate function (ARF/SRF). These two sets of measures are complementary to each other and can be effectively used together to understand physical activity patterns. The specific features are illustrated by an analysis of wearable device data from National Health and Nutrition Examination Survey (NHANES). A two-level semiparametric regression model for ARF and the associated activity magnitude is developed under a unified framework using the marked point process formulation. The inactive and active states measured by accelerometers are treated as a 0-1 point process, and the activity magnitude measured at each active state is defined as a marked variable. The commonly encountered missing data problem due to device nonwear is referred to as "window censoring," which is handled by a proper estimation approach that adopts techniques from recurrent event data. Large sample properties of the estimator and comparison between two regression models as measurement frequency increases are studied. Simulation and NHANES data analysis results are presented. The statistical inference and analysis results suggest that ASRF/SARF and ARF/SRF provide useful analytical tools to practitioners for future research on wearable device data.

摘要

本文介绍了两套探索性工具,用于研究身体活动模式:活跃-久坐/久坐-活跃率函数(ASRF/SARF)和活跃/久坐率函数(ARF/SRF)。这两套措施相互补充,可以有效地一起使用,以了解身体活动模式。通过对国家健康和营养检查调查(NHANES)中可穿戴设备数据的分析来说明它们的具体特点。在统一框架下,使用标记点过程公式开发了用于 ARF 和相关活动幅度的两级半参数回归模型。加速度计测量的不活动和活动状态被视为 0-1 点过程,在每个活动状态下测量的活动幅度被定义为标记变量。由于设备未佩戴而导致的常见缺失数据问题被称为“窗口 censoring”,通过采用复发事件数据技术的适当估计方法来处理。研究了估计量的大样本性质和两种回归模型之间的比较,随着测量频率的增加。给出了模拟和 NHANES 数据分析结果。统计推断和分析结果表明,ASRF/SARF 和 ARF/SRF 为实践者提供了有用的分析工具,用于未来对可穿戴设备数据的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4989/8851384/e7e0aead8b97/nihms-1773006-f0001.jpg

相似文献

1
Analyzing wearable device data using marked point processes.使用标记点过程分析可穿戴设备数据。
Biometrics. 2021 Mar;77(1):54-66. doi: 10.1111/biom.13269. Epub 2020 May 6.
8
A two-stage model for wearable device data.可穿戴设备数据的两阶段模型。
Biometrics. 2018 Jun;74(2):744-752. doi: 10.1111/biom.12781. Epub 2017 Oct 10.
10
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.非ignorable协变量缺失数据问题中的经验似然
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.

本文引用的文献

3
A two-stage model for wearable device data.可穿戴设备数据的两阶段模型。
Biometrics. 2018 Jun;74(2):744-752. doi: 10.1111/biom.12781. Epub 2017 Oct 10.
7
Evolution of accelerometer methods for physical activity research.用于身体活动研究的加速度计方法的演变
Br J Sports Med. 2014 Jul;48(13):1019-23. doi: 10.1136/bjsports-2014-093546. Epub 2014 Apr 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验