Suppr超能文献

通过用B N进行替代掺杂实现石墨烯异质结构的带隙工程

Band-Gap Engineering of Graphene Heterostructures by Substitutional Doping with B N.

作者信息

Sawahata Hisaki, Maruyama Mina, Cuong Nguyen Thanh, Omachi Haruka, Shinohara Hisanori, Okada Susumu

机构信息

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan.

International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.

出版信息

Chemphyschem. 2018 Jan 19;19(2):237-242. doi: 10.1002/cphc.201700972. Epub 2017 Dec 27.

Abstract

We investigated the energetics and electronic structure of B N -doped graphene employing density functional theory calculations with the generalized gradient approximation. Our calculations reveal that all of the B N -doped graphene structures are semiconducting, irrespective of the periodicity of the B N embedded into the graphene network. This is in contrast to graphene nanomeshes, which are either semiconductors or metals depending on the mesh arrangement. In B N -doped graphene, the effective masses for both electrons and holes are small. The band gap in the B N -doped graphene networks and the total energy of the B N -doped graphene are inversely proportional to the B N spacing. Furthermore, both properties depend on whether or not the graphene region possesses a Clar structure. In particular, the sheets with a Clar structure exhibit a wider band gap and a slightly lower total energy than those without a Clar structure.

摘要

我们采用广义梯度近似的密度泛函理论计算方法,研究了硼氮掺杂石墨烯的能量学和电子结构。我们的计算结果表明,所有硼氮掺杂的石墨烯结构均为半导体,与嵌入石墨烯网络中的硼氮的周期性无关。这与石墨烯纳米网相反,石墨烯纳米网根据网格排列情况可以是半导体或金属。在硼氮掺杂的石墨烯中,电子和空穴的有效质量都很小。硼氮掺杂石墨烯网络中的带隙和硼氮掺杂石墨烯的总能量与硼氮间距成反比。此外,这两种性质都取决于石墨烯区域是否具有克拉尔结构。特别是,具有克拉尔结构的薄片比没有克拉尔结构的薄片表现出更宽的带隙和略低的总能量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验