Suppr超能文献

掺杂镓、锗、砷和硒原子的石墨烯的化学反应性和带隙开启

Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms.

作者信息

Denis Pablo A

机构信息

Computational Nanotechnology, DETEMA, Facultad de Química, UDELAR, CC 1157, 11800 Montevideo (Uruguay).

出版信息

Chemphyschem. 2014 Dec 15;15(18):3994-4000. doi: 10.1002/cphc.201402608. Epub 2014 Oct 27.

Abstract

Herein, the effects of substitutional doping of graphene with Ga, Ge, As, and Se are shown. Ge exhibits the lowest formation energy, whereas Ga has the largest one. Ga- and As-doped graphene display a reactivity that is larger than that corresponding to a double vacancy. They can decompose H2 and O2 easily. Variation of the type and concentration of dopant makes the adjustment of the interlayer interaction possible. In general, doping of monolayer graphene opens a band gap. At some concentrations, Ga doping induces a half metallic behavior. As is the element that offers the widest range of gap tuning. Heyd-Scuseria-Ernzerhof calculations indicate that it can be varied from 1.3 to 0.3 eV. For bilayer graphene, the doped sheet induces charge redistribution in the perfect underneath sheet, which opens a gap in the range of 0.05-0.4 eV. This value is useful for developing graphene-based electronics, as the carrier mobility of the undoped sheet is not expected to alter.

摘要

在此展示了用Ga、Ge、As和Se对石墨烯进行替代掺杂的效果。Ge表现出最低的形成能,而Ga的形成能最大。Ga和As掺杂的石墨烯表现出比对应双空位更大的反应活性。它们能轻易分解H₂和O₂。掺杂剂类型和浓度的变化使得层间相互作用的调节成为可能。一般来说,单层石墨烯的掺杂会打开一个带隙。在某些浓度下,Ga掺杂会诱导半金属行为。As是提供最宽带隙调谐范围的元素。Heyd-Scuseria-Ernzerhof计算表明其带隙可在1.3至0.3 eV之间变化。对于双层石墨烯,掺杂的那一层会在理想的下层中诱导电荷重新分布,从而打开一个0.05 - 0.4 eV范围内的带隙。该值对于开发基于石墨烯的电子产品很有用,因为预计未掺杂层的载流子迁移率不会改变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验