Silva A J da, Floquet S, Santos D O C
Centro de Formação em Ciências e Tecnologias Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Bahia. CEP 45613-204, Brazil.
Colegiado de Engenharia Civil, Universidade Federal do Vale do São Francisco, Juazeiro, Bahia. CEP 48902-300, Brazil.
J Biol Phys. 2018 Mar;44(1):37-50. doi: 10.1007/s10867-017-9474-3. Epub 2017 Oct 13.
The theoretical basis of neuronal coding, associated with short-term degradation in synaptic transmission, is a matter of debate in the literature. In fact, electrophysiological signals are commonly characterized as inversely proportional to stimulus intensity. Among theoretical descriptions of this phenomenon, models based on 1/f-dependency are employed to investigate the biophysical properties of short-term synaptic depression. In this work, we formulate a model based on a paradigmatic q-differential equation to obtain a generalized formalism useful for investigation of nonextensivity in this specific type of synaptic plasticity. Our analysis reveals nonextensivity in data from electrophysiological recordings and also a statistical crossover in neurotransmission. In particular, statistical transitions provide additional support to the hypothesis of heterogeneous release probability of neurotransmitters. On the other hand, the simple vesicle model agrees with data only at low-frequency stimulations. Thus, the present work presents a method to demonstrate that short-term depression is not only governed by random mechanisms but also by nonextensive behavior. Our findings also conciliate morphological and electrophysiological investigations into a coherent biophysical scenario.
与突触传递中的短期衰退相关的神经元编码的理论基础,在文献中是一个有争议的问题。事实上,电生理信号通常被描述为与刺激强度成反比。在对这一现象的理论描述中,基于1/f依赖性的模型被用于研究短期突触抑制的生物物理特性。在这项工作中,我们基于一个典型的q-微分方程构建了一个模型,以获得一种广义形式,用于研究这种特定类型突触可塑性中的非广延性。我们的分析揭示了电生理记录数据中的非广延性以及神经传递中的统计交叉。特别是,统计转变为神经递质释放概率异质性的假设提供了额外支持。另一方面,简单囊泡模型仅在低频刺激下与数据相符。因此,本研究提出了一种方法,以证明短期抑制不仅受随机机制支配,还受非广延性行为支配。我们的研究结果还将形态学和电生理研究协调到一个连贯的生物物理场景中。
Adv Exp Med Biol. 2017
Phys Rev E Stat Nonlin Soft Matter Phys. 2011-10
J Comput Neurosci. 2015-8
Phys Rev E Stat Nonlin Soft Matter Phys. 2012-4
Int J Neural Syst. 2015-5-26
Annu Rev Physiol. 2013-11-20
J R Soc Interface. 2012-1-18
Phys Rev E Stat Nonlin Soft Matter Phys. 2011-10
Cell Tissue Res. 2006-11
J Physiol. 2004-11-1
Annu Rev Neurosci. 2004