Suppr超能文献

组织喷雾质谱的特征选择算法

Feature selection algorithm for spray-from-tissue mass spectrometry.

作者信息

Sorokin Anatoly, Zhvansky Evgeny, Shurkhay Vsevolod, Bocharov Konstantin, Popov Igor, Levin Nikita, Zubtsov Dmitry, Bormotov Denis, Kostyukevich Yury, Potapov Alexander, Nikolaev Eugene

机构信息

1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia.

2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia.

出版信息

Eur J Mass Spectrom (Chichester). 2017 Aug;23(4):237-241. doi: 10.1177/1469066717721843.

Abstract

Detection of the brain tumor margins is one of the most significant problems in neurosurgery. Several mass spectrometry-based approaches have been proposed recently for tumor boundary detection. One of them, spray from tissue does not require sample preparation but needs special algorithms for analysis of its spectra. Here we proposed the feature selection algorithm designed for analysis of spray-from-tissue data.

摘要

脑肿瘤边缘的检测是神经外科手术中最重要的问题之一。最近已经提出了几种基于质谱的方法用于肿瘤边界检测。其中一种,组织喷雾法不需要样品制备,但需要特殊算法来分析其光谱。在此,我们提出了一种专为分析组织喷雾数据而设计的特征选择算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验