IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain.
IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain.
Plant Physiol Biochem. 2017 Nov;120:132-143. doi: 10.1016/j.plaphy.2017.09.024. Epub 2017 Sep 30.
The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization.
乙烯在诱导植物对某些真菌病原体产生抗性或易感性中的作用显然取决于植物病原体的相互作用,目前几乎没有关于苹果与青霉相互作用的信息。由于扩展青霉是亲和性病原体,而青霉属 digitatum 是苹果的非寄主,本研究旨在从生化和分子水平上阐明每种青霉属 spp. 如何干扰果实乙烯的生物合成。在接种后不同时间进行感染能力和与乙烯生物合成相关的不同方面的研究。结果表明,在扩展青霉感染期间,果实乙烯的生物合成与对其他生物(非寄主病原体青霉属 digitatum)或非生物胁迫(创伤)的反应不同。由于扩展青霉引起的疾病的最初症状在果实乙烯跃变爆发之前可见。事实上,响应扩展青霉,乙烯跃变爆发减少,同时伴随着 MdACO3 基因表达的重要诱导以及 ACO(1-氨基环丙烷-1-羧酸氧化酶)和 ACS(1-氨基环丙烷-1-羧酸合酶)酶活性的抑制(约 3 倍)和过表达(约 2 倍),表明 MdACO3 在扩展青霉与苹果的相互作用中可能发挥作用,这可能与系统 1 乙烯生物合成有关。系统 1 被乙烯自动抑制,是无跃变或预跃变果实的特征。因此,我们假设扩展青霉可能“操纵”苹果中的内源乙烯生物合成,导致有效的防御措施被回避或抑制,从而促进其定植。