Wiesner R J, Kreutzer U, Rösen P, Grieshaber M K
Institut für Zoologie, Lehrstuhl für Tierphysiologie, Düsseldorf, F.R.G.
Biochim Biophys Acta. 1988 Oct 26;936(1):114-23. doi: 10.1016/0005-2728(88)90258-7.
The subcellular distribution of adenine nucleotides, phosphocreatine and intermediates of the malate-aspartate cycle was investigated in adult rat heart myocytes under normoxia and anoxia. Cytosolic and mitochondrial concentrations of metabolites were determined by a fractionation method using digitonin. Under normoxia, cytosolic/mitochondrial gradients were found for ATP (c/m = 4), AMP (c/m less than 0.01), citrate (c/m = 0.5), aspartate (c/m = 3), glutamate (c/m = 2), while phosphocreatine and glutamine were confined to the cytosolic space. No gradients were found for malate and 2-oxoglutarate. The results show that the transport of electrons from the cytosol into the mitochondria is supported by the glutamate gradient and by a high glutamate/aspartate ratio inside the mitochondria (Glu/Asp = 15) which is maintained by the energy-dependent Glu-Asp exchange across the mitochondrial membrane. Under anoxia, cytosolic glutamate is transaminated with pyruvate, yielding alanine and 2-oxoglutarate, which is oxidized to succinate inside the mitochondria and leaves the cell. The data indicate that stimulation of transamination is caused by a mass action effect following a decrease in cytosolic 2-oxoglutarate which may be due to succinate-2-oxoglutarate exchange across the mitochondrial membrane. Inhibition of the energy-dependent inward transport of glutamate may support this process.
在常氧和缺氧条件下,对成年大鼠心肌细胞中腺嘌呤核苷酸、磷酸肌酸和苹果酸 - 天冬氨酸循环中间体的亚细胞分布进行了研究。使用洋地黄皂苷通过分级分离法测定代谢物的胞质和线粒体浓度。在常氧条件下,发现ATP存在胞质/线粒体梯度(c/m = 4),AMP存在梯度(c/m小于0.01),柠檬酸存在梯度(c/m = 0.5),天冬氨酸存在梯度(c/m = 3),谷氨酸存在梯度(c/m = 2),而磷酸肌酸和谷氨酰胺局限于胞质空间。苹果酸和2-氧代戊二酸未发现梯度。结果表明,从胞质到线粒体的电子转运由谷氨酸梯度以及线粒体内高的谷氨酸/天冬氨酸比值(Glu/Asp = 15)支持,该比值通过依赖能量的谷氨酸 - 天冬氨酸在线粒体内膜的交换得以维持。在缺氧条件下,胞质谷氨酸与丙酮酸进行转氨基作用,生成丙氨酸和2-氧代戊二酸,2-氧代戊二酸在线粒体内被氧化为琥珀酸并离开细胞。数据表明转氨基作用受到刺激是由于胞质2-氧代戊二酸减少后的质量作用效应,这可能是由于琥珀酸 - 2-氧代戊二酸在线粒体内膜的交换所致。抑制依赖能量的谷氨酸内向转运可能会支持这一过程。