State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University.
College of Life Sciences, Fujian Agriculture and Forestry University.
Brief Bioinform. 2019 Jan 18;20(1):274-287. doi: 10.1093/bib/bbx123.
The identification of plant-pathogen protein-protein interactions (PPIs) is an attractive and challenging research topic for deciphering the complex molecular mechanism of plant immunity and pathogen infection. Considering that the experimental identification of plant-pathogen PPIs is time-consuming and labor-intensive, computational methods are emerging as an important strategy to complement the experimental methods. In this work, we first evaluated the performance of traditional computational methods such as interolog, domain-domain interaction and domain-motif interaction in predicting known plant-pathogen PPIs. Owing to the low sensitivity of the traditional methods, we utilized Random Forest to build an inter-species PPI prediction model based on multiple sequence encodings and novel network attributes in the established plant PPI network. Critical assessment of the features demonstrated that the integration of sequence information and network attributes resulted in significant and robust performance improvement. Additionally, we also discussed the influence of Gene Ontology and gene expression information on the prediction performance. The Web server implementing the integrated prediction method, named InterSPPI, has been made freely available at http://systbio.cau.edu.cn/intersppi/index.php. InterSPPI could achieve a reasonably high accuracy with a precision of 73.8% and a recall of 76.6% in the independent test. To examine the applicability of InterSPPI, we also conducted cross-species and proteome-wide plant-pathogen PPI prediction tests. Taken together, we hope this work can provide a comprehensive understanding of the current status of plant-pathogen PPI predictions, and the proposed InterSPPI can become a useful tool to accelerate the exploration of plant-pathogen interactions.
植物病原体蛋白-蛋白相互作用(PPIs)的鉴定是破译植物免疫和病原体感染复杂分子机制的一个有吸引力和具有挑战性的研究课题。考虑到植物病原体 PPIs 的实验鉴定既耗时又费力,计算方法作为补充实验方法的重要策略正在兴起。在这项工作中,我们首先评估了传统计算方法(如同源性分析、结构域-结构域相互作用和结构域-模体相互作用)在预测已知植物病原体 PPIs 方面的性能。由于传统方法的灵敏度较低,我们利用随机森林基于多个序列编码和在建立的植物 PPI 网络中新颖的网络属性,构建了一种种间 PPI 预测模型。对特征的严格评估表明,序列信息和网络属性的融合导致了显著而稳健的性能提升。此外,我们还讨论了基因本体和基因表达信息对预测性能的影响。实现集成预测方法的 Web 服务器,名为 InterSPPI,已在 http://systbio.cau.edu.cn/intersppi/index.php 上免费提供。InterSPPI 在独立测试中可达到合理的高准确率,精度为 73.8%,召回率为 76.6%。为了检验 InterSPPI 的适用性,我们还进行了跨物种和全蛋白质组植物病原体 PPI 预测测试。总之,我们希望这项工作可以全面了解植物病原体 PPI 预测的现状,并且所提出的 InterSPPI 可以成为加速植物病原体相互作用探索的有用工具。