Suppr超能文献

疾病易感性基因的基因组工程提高植物的抗性。

Genome engineering of disease susceptibility genes for enhancing resistance in plants.

机构信息

Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.

School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.

出版信息

Funct Integr Genomics. 2023 Jun 20;23(3):207. doi: 10.1007/s10142-023-01133-w.

Abstract

Introgression of disease resistance genes (R-genes) to fight against an array of phytopathogens takes several years using conventional breeding approaches. Pathogens develop mechanism(s) to escape plants immune system by evolving new strains/races, thus making them susceptible to disease. Conversely, disruption of host susceptibility factors (or S-genes) provides opportunities for resistance breeding in crops. S-genes are often exploited by phytopathogens to promote their growth and infection. Therefore, identification and targeting of disease susceptibility genes (S-genes) are gaining more attention for the acquisition of resistance in plants. Genome engineering of S-genes results in targeted, transgene-free gene modification through CRISPR-Cas-mediated technology and has been reported in several agriculturally important crops. In this review, we discuss the defense mechanism in plants against phytopathogens, tug of war between R-genes and S-genes, in silico techniques for identification of host-target (S-) genes and pathogen effector molecule(s), CRISPR-Cas-mediated S-gene engineering, its applications, challenges, and future prospects.

摘要

利用传统的育种方法,将抗病基因(R-基因)导入植物以抵御多种植物病原体需要数年时间。病原体通过进化产生新的菌株/品种来逃避植物的免疫系统,从而使植物易受疾病侵害。相反,破坏宿主易感性因素(或 S-基因)为作物的抗性育种提供了机会。S-基因经常被植物病原体利用来促进其生长和感染。因此,鉴定和靶向疾病易感性基因(S-基因)越来越受到关注,以在植物中获得抗性。S-基因的基因组工程通过 CRISPR-Cas 介导的技术实现了靶向、无转基因的基因修饰,并已在几种重要的农业作物中得到报道。在这篇综述中,我们讨论了植物抵御植物病原体的防御机制、R-基因和 S-基因之间的拉锯战、宿主靶标(S-)基因和病原体效应分子的计算技术鉴定、CRISPR-Cas 介导的 S-基因工程及其应用、挑战和未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验