Suppr超能文献

CellRegMap:一种使用 scRNA-seq 进行上下文特异性调控变体映射的统计框架。

CellRegMap: a statistical framework for mapping context-specific regulatory variants using scRNA-seq.

机构信息

European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.

Wellcome Sanger Institute, Cambridge, UK.

出版信息

Mol Syst Biol. 2022 Aug;18(8):e10663. doi: 10.15252/msb.202110663.

Abstract

Single-cell RNA sequencing (scRNA-seq) enables characterizing the cellular heterogeneity in human tissues. Recent technological advances have enabled the first population-scale scRNA-seq studies in hundreds of individuals, allowing to assay genetic effects with single-cell resolution. However, existing strategies to analyze these data remain based on principles established for the genetic analysis of bulk RNA-seq. In particular, current methods depend on a priori definitions of discrete cell types, and hence cannot assess allelic effects across subtle cell types and cell states. To address this, we propose the Cell Regulatory Map (CellRegMap), a statistical framework to test for and quantify genetic effects on gene expression in individual cells. CellRegMap provides a principled approach to identify and characterize genotype-context interactions of known eQTL variants using scRNA-seq data. This model-based approach resolves allelic effects across cellular contexts of different granularity, including genetic effects specific to cell subtypes and continuous cell transitions. We validate CellRegMap using simulated data and apply it to previously identified eQTL from two recent studies of differentiating iPSCs, where we uncover hundreds of eQTL displaying heterogeneity of genetic effects across cellular contexts. Finally, we identify fine-grained genetic regulation in neuronal subtypes for eQTL that are colocalized with human disease variants.

摘要

单细胞 RNA 测序 (scRNA-seq) 能够描绘人类组织中的细胞异质性。最近的技术进步使数百个人的单细胞 RNA-seq 研究成为可能,从而能够以单细胞分辨率检测遗传效应。然而,现有分析这些数据的策略仍然基于批量 RNA-seq 遗传分析的原理。特别是,目前的方法依赖于离散细胞类型的先验定义,因此无法评估细微细胞类型和细胞状态之间的等位基因效应。为了解决这个问题,我们提出了细胞调控图谱(CellRegMap),这是一种用于测试和量化个体细胞中基因表达的遗传效应的统计框架。CellRegMap 提供了一种使用 scRNA-seq 数据识别和表征已知 eQTL 变体的基因型-上下文相互作用的原则方法。这种基于模型的方法可以解决不同粒度的细胞环境中的等位基因效应,包括特定于细胞亚型和连续细胞转变的遗传效应。我们使用模拟数据验证了 CellRegMap,并将其应用于最近两项分化 iPSC 研究中已识别的 eQTL,从中我们发现了数百个在细胞环境中具有遗传效应异质性的 eQTL。最后,我们确定了与人类疾病变体共定位的 eQTL 在神经元亚型中的精细遗传调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c3/9380406/815da50bb249/MSB-18-e10663-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验