Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium.
Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
Int J Pharm. 2018 Sep 15;548(2):783-792. doi: 10.1016/j.ijpharm.2017.10.022. Epub 2017 Oct 12.
Extracellular vesicles (EVs) are nanosized vesicular structures released by cells to communicate with one another. The growing interest in the (patho)physiological function and potential pharmaceutical application of these vesicles is accompanied by a vast number of new research groups entering this research field and a plethora of different protocols to separate EVs from non-vesicular components. This lack of uniformity often generates conflicting or difficult-to-compare results. Here we provide a comparative analysis of different EV isolation strategies, discussing the purity of the final isolate and highlighting the importance of purity on downstream experimental readouts. First, we show that ultracentrifugation (UC) of B16F10 melanoma cell-derived conditioned medium co-purifies proteins or protein complexes with nuclease activity. Such contaminants should be taken into account when aiming to apply EVs as delivery carriers for exogenous nucleic acids. Second, three commonly used purification strategies (i.e. precipitation, UC and density-gradient centrifugation) were evaluated for their ability to remove non-incorporated fluorescent dye (i.e. the lipophilic PKH67 dye), important when probing EV interactions with cells. For both types of impurities, endogenous and exogenous, density gradient purification outperforms the other evaluated methods. Overall, these results demonstrate that the implementation of stringent purification protocols and adequate controls is of pivotal importance to draw reliable conclusions from downstream experiments performed with EV isolates.
细胞外囊泡 (EVs) 是细胞释放的纳米大小的囊泡结构,用于彼此之间的通讯。这些囊泡的 (病理) 生理学功能及其潜在的药物应用引起了越来越多的关注,大量新的研究小组进入了这一研究领域,并采用了许多不同的方案来从非囊泡成分中分离 EVs。这种缺乏统一性常常导致相互矛盾或难以比较的结果。在这里,我们对不同的 EV 分离策略进行了比较分析,讨论了最终分离物的纯度,并强调了纯度对下游实验结果的重要性。首先,我们表明,B16F10 黑色素瘤细胞来源的条件培养基的超速离心 (UC) 共纯化了具有核酸酶活性的蛋白质或蛋白质复合物。当将 EV 用作外源核酸的递送载体时,应考虑到这些污染物。其次,评估了三种常用的纯化策略 (即沉淀、UC 和密度梯度离心) 去除未结合的荧光染料 (即亲脂性 PKH67 染料) 的能力,这在探测 EV 与细胞相互作用时非常重要。对于这两种类型的杂质,内源性和外源性,密度梯度纯化都优于其他评估方法。总的来说,这些结果表明,实施严格的纯化方案和适当的对照对于从用 EV 分离物进行的下游实验中得出可靠的结论至关重要。