Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie,47 boulevard de l'Hôpital, 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine,700 Albany Street, W-702A Boston, MA, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Avinguda Tibidabo 39-43, 08035 Barcelona, Spain.
Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et la Moelle Épinière, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie,47 boulevard de l'Hôpital, 75013 Paris, France.
Neurosci Biobehav Rev. 2017 Dec;83:381-404. doi: 10.1016/j.neubiorev.2017.10.006. Epub 2017 Oct 13.
Non-invasive brain stimulation methods, such as Transcranial Magnetic Stimulation (TMS), are widely used worldwide to make causality-based inferences about brain-behavior interactions. TMS-based clinical applications have been shown promising to treat neurological or psychiatric diseases. TMS works by inducing non-invasively electric currents in localized cortical regions thus modulating their excitability levels and ongoing activity patterns depending on stimulation settings: frequency, number of pulses, train duration and intertrain intervals. Proper use of TMS in the fundamental and clinical neuroscience research requires a deep understanding of its operational principles, risks, potential and limitations. In this article we present the principles through which TMS is thought to operate. Readers will be provided with the bases to be able to understand and critically discuss TMS studies and design hypothesis driven TMS applications for basic and clinical neuroscience. Moreover, some recently identified physiological phenomena which that can dramatically influence the efficacy and magnitude of TMS impact and technological and methodological developments to guide TMS interventions that are becoming mainstream in the field will be also reviewed.
非侵入性脑刺激方法,如经颅磁刺激(TMS),在全球范围内被广泛用于对大脑-行为相互作用进行基于因果关系的推断。基于 TMS 的临床应用已被证明有望治疗神经或精神疾病。TMS 通过非侵入性地在局部皮质区域中诱导电流来起作用,从而根据刺激设置来调节其兴奋性水平和正在进行的活动模式:频率、脉冲数、训练持续时间和训练间间隔。要在基础和临床神经科学研究中正确使用 TMS,需要深入了解其操作原理、风险、潜力和局限性。本文介绍了 TMS 被认为起作用的原理。读者将获得理解和批判性讨论 TMS 研究以及设计基于假设的 TMS 应用的基础,用于基础和临床神经科学。此外,还将回顾一些最近发现的生理现象,这些现象会极大地影响 TMS 影响的效果和幅度,以及指导 TMS 干预的技术和方法学发展,这些干预措施正在该领域成为主流。
Rev Neurol (Paris). 2011-4
Front Neural Circuits. 2016-9-22
Curr Neurol Neurosci Rep. 2020-2-4
Neuropsychol Rehabil. 2011-6-24
Ann Phys Rehabil Med. 2015-9
Zh Nevrol Psikhiatr Im S S Korsakova. 2015
Schizophrenia (Heidelb). 2025-6-11
Adv Sci (Weinh). 2025-7
Acta Epileptol. 2024-12-4
Soc Cogn Affect Neurosci. 2025-5-21