Suppr超能文献

使用联合循环神经网络和结构化预测模型的序列分割

SEQUENCE SEGMENTATION USING JOINT RNN AND STRUCTURED PREDICTION MODELS.

作者信息

Adi Yossi, Keshet Joseph, Cibelli Emily, Goldrick Matthew

机构信息

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel.

Department of Linguistics, Northwestern University, Evanston, IL, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2017 Mar;2017:2422-2426. doi: 10.1109/ICASSP.2017.7952591. Epub 2017 Jun 19.

Abstract

We describe and analyze a simple and effective algorithm for sequence segmentation applied to speech processing tasks. We propose a neural architecture that is composed of two modules trained jointly: a recurrent neural network (RNN) module and a structured prediction model. The RNN outputs are considered as feature functions to the structured model. The overall model is trained with a structured loss function which can be designed to the given segmentation task. We demonstrate the effectiveness of our method by applying it to two simple tasks commonly used in phonetic studies: word segmentation and voice onset time segmentation. Results suggest the proposed model is superior to previous methods, obtaining state-of-the-art results on the tested datasets.

摘要

我们描述并分析了一种应用于语音处理任务的简单有效的序列分割算法。我们提出了一种由两个联合训练的模块组成的神经架构:一个循环神经网络(RNN)模块和一个结构化预测模型。RNN的输出被视为结构化模型的特征函数。整个模型使用一个可以针对给定分割任务进行设计的结构化损失函数进行训练。我们通过将其应用于语音研究中常用的两个简单任务来证明我们方法的有效性:词分割和语音起始时间分割。结果表明,所提出的模型优于以前的方法,在测试数据集上获得了当前最优的结果。

相似文献

1
SEQUENCE SEGMENTATION USING JOINT RNN AND STRUCTURED PREDICTION MODELS.使用联合循环神经网络和结构化预测模型的序列分割
Proc IEEE Int Conf Acoust Speech Signal Process. 2017 Mar;2017:2422-2426. doi: 10.1109/ICASSP.2017.7952591. Epub 2017 Jun 19.
3
Scene Segmentation with DAG-Recurrent Neural Networks.基于有向无环图递归神经网络的场景分割。
IEEE Trans Pattern Anal Mach Intell. 2018 Jun;40(6):1480-1493. doi: 10.1109/TPAMI.2017.2712691. Epub 2017 Jun 6.
8
Recurrent Neural Networks With Auxiliary Memory Units.带辅助记忆单元的递归神经网络。
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1652-1661. doi: 10.1109/TNNLS.2017.2677968. Epub 2017 Mar 21.

引用本文的文献

本文引用的文献

1
VOWEL DURATION MEASUREMENT USING DEEP NEURAL NETWORKS.使用深度神经网络进行元音时长测量。
IEEE Int Workshop Mach Learn Signal Process. 2015 Sep;2015. doi: 10.1109/MLSP.2015.7324331. Epub 2015 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验