Sanders Teresa H
Pharmacology Department, Vanderbilt University, Nashville, TN, United States.
Front Integr Neurosci. 2017 Sep 28;11:24. doi: 10.3389/fnint.2017.00024. eCollection 2017.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor function in patients with Parkinson's disease (PD). STN-DBS enables similar improved motor function, including increased movement speed (reduced bradykinesia), in the 6-OHDA dopamine-depletion mouse model of PD. Previous analyses of electrophysiological recordings from STN and motor cortex (M1) have explored signaling changes that correspond to PD and amelioration of PD symptoms. The most common results show an increase in beta frequency power during 'off' states and a reduction in beta during 'on' states. Surprisingly, however, few studies have analyzed whole signal measures of amplitude and coherence during stimulation in freely moving subjects. In previous work by the author, specific transfection of layer five motor cortex projections to the STN revealed an axonal network with collaterals reaching to multiple non-dopaminergic subcortical areas of the brain. The large excitatory shift that stimulation of this axonal network could potentially induce inspired the current study's hypothesis that amplification of excitatory signaling occurs during stimulation of cortico-subthalamic projections. The results show that, in awake mice, (1) the root-mean-square amplitudes of STN and M1 local field potentials (LFPs) are significantly decreased ipsilateral to chronic unilateral 6-OHDA lesions, (2) stimulation of cortico-subthalamic projections increases the amplitude of M1- and STN-LFPs, and 3) M1-LFP amplitude correlates strongly with locomotion speed in lesioned mice. Together, these findings demonstrate that bradykinesia-reducing stimulation of cortico-subthalamic projections amplifies both cortical and subcortical motor circuit activity in unilaterally dopamine-depleted mice. Most PD treatments are focused on increasing dopamine in the dorsal striatum. However, in this study, stimulation of layer five cortico-subthalamic glutamatergic axons that do not directly project to dopaminergic neurons increased movement and amplified cortico-subthalamic excitatory signaling in dopamine-depleted mice. The correlation between M1-LFP amplitude and locomotion speed observed in these mice points to a role for upregulated hyperdirect pathway excitatory signaling in bradykinesia amelioration. In addition to providing insight into the elusive mechanisms of DBS, these motor circuit amplification relationships suggest that specific manipulation of NMDA, AMPA, and/or metabotropic glutamate receptors in the hyperdirect pathway may be beneficial for upregulating signaling and movement in PD.
丘脑底核(STN)的深部脑刺激(DBS)可改善帕金森病(PD)患者的运动功能。在PD的6-羟基多巴胺(6-OHDA)多巴胺耗竭小鼠模型中,STN-DBS也能实现类似的运动功能改善,包括提高运动速度(减轻运动迟缓)。先前对STN和运动皮层(M1)电生理记录的分析探讨了与PD及PD症状改善相对应的信号变化。最常见的结果显示,“关”状态下β频率功率增加,“开”状态下β频率降低。然而,令人惊讶的是,很少有研究分析自由活动受试者在刺激过程中的信号幅度和相干性等整体信号指标。在作者之前的工作中,对投射至STN的第五层运动皮层进行特异性转染,揭示了一个轴突网络,其侧支延伸至大脑多个非多巴胺能的皮层下区域。刺激该轴突网络可能引发的大兴奋性变化激发了本研究的假设,即皮质-丘脑底核投射刺激过程中会发生兴奋性信号放大。结果表明,在清醒小鼠中,(1)慢性单侧6-OHDA损伤同侧的STN和M1局部场电位(LFP)的均方根幅度显著降低,(2)刺激皮质-丘脑底核投射可增加M1和STN-LFP的幅度,以及(3)M1-LFP幅度与损伤小鼠的运动速度密切相关。这些发现共同表明,减少运动迟缓的皮质-丘脑底核投射刺激可增强单侧多巴胺耗竭小鼠的皮层和皮层下运动回路活动。大多数PD治疗都集中在增加背侧纹状体中的多巴胺。然而,在本研究中,刺激不直接投射至多巴胺能神经元的第五层皮质-丘脑底核谷氨酸能轴突,可增加多巴胺耗竭小鼠的运动并增强皮质-丘脑底核兴奋性信号。在这些小鼠中观察到的M1-LFP幅度与运动速度之间的相关性表明,上调的超直接通路兴奋性信号在改善运动迟缓中发挥作用。除了深入了解DBS难以捉摸的机制外,这些运动回路放大关系表明,对超直接通路中的N-甲基-D-天冬氨酸(NMDA)、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)和/或代谢型谷氨酸受体进行特异性操纵,可能有助于上调PD中的信号传导和运动。