Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan.
J Neurosci. 2020 Sep 23;40(39):7451-7463. doi: 10.1523/JNEUROSCI.0772-20.2020. Epub 2020 Aug 26.
The subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia. Thus, clarifying how STN neuronal activity is controlled by the two inputs is crucial. Cortical stimulation evokes early excitation and late excitation in STN neurons, intervened by a short gap. Here, to examine the origin of each component of this biphasic response, we recorded neuronal activity in the STN, combined with electrical stimulation of the motor cortices and local drug application in two male monkeys () in the awake state. Local application of glutamate receptor antagonists, a mixture of an AMPA/kainate receptor antagonist and an NMDA receptor antagonist, into the vicinity of recorded STN neurons specifically diminished early excitation. Blockade of the striatum (putamen) or GPe with local injection of a GABA receptor agonist, muscimol, diminished late excitation in the STN. Blockade of striato-GPe transmission with local injection of a GABA receptor antagonist, gabazine, into the GPe also abolished late excitation. These results indicate that cortically evoked early and late excitation in the STN is mediated by the cortico-STN glutamatergic hyperdirect and the cortico-striato-GPe-STN indirect pathways, respectively. Here we show that the subthalamic nucleus (STN), an input station of the basal ganglia, receives cortical inputs through the cortico-STN hyperdirect and cortico-striato-external pallido-STN indirect pathways. This knowledge is important for understanding not only the normal functions of the STN, but also the pathophysiology of STN-related disorders and therapy targeting the STN. Lesions or application of high-frequency stimulation in the STN ameliorates parkinsonian symptoms. These procedures could affect all components in the STN, such as afferent inputs through the hyperdirect and indirect pathways, and STN neuronal activity. If we can understand which component is most affected by such procedures, we may be able to identify more effective manipulation targets or methods to treat Parkinson's disease.
底丘脑核(STN)在控制自主运动和基底节疾病方面起着关键作用,例如帕金森病和偏侧舞动。STN 通过皮质-STN 超直接途径直接接收来自大脑皮层的谷氨酸能输入,通过皮质-纹状体-苍白球外节-GPe-STN 间接途径接收来自苍白球外节的 GABA 能输入。然后,STN 驱动基底节的输出核——苍白球内节。因此,阐明这两个输入如何控制 STN 神经元活动至关重要。皮质刺激会在 STN 神经元中引发早期兴奋和晚期兴奋,中间有一个短暂的间隙。在这里,为了研究这种双相反应的每个成分的起源,我们在两只雄性猴子()清醒状态下,结合对运动皮层的电刺激和局部药物应用,记录了 STN 神经元的活动。局部应用谷氨酸受体拮抗剂,即 AMPA/海人藻酸受体拮抗剂和 NMDA 受体拮抗剂的混合物,专门减少了记录的 STN 神经元的早期兴奋。局部注射 GABA 受体激动剂——毒蕈碱,阻断纹状体(壳核)或苍白球,可以减少 STN 中的晚期兴奋。局部注射 GABA 受体拮抗剂——gabazine 到苍白球中,阻断纹状体苍白球传递,也可消除晚期兴奋。这些结果表明,皮质诱发的 STN 早期和晚期兴奋分别由皮质-STN 谷氨酸能超直接途径和皮质-纹状体-苍白球外节-GPe-STN 间接途径介导。在这里,我们表明基底节的输入站——底丘脑核(STN)通过皮质-STN 超直接和皮质-纹状体-苍白球外节-GPe-STN 间接途径接收皮质输入。这一知识不仅对理解 STN 的正常功能很重要,而且对 STN 相关疾病的病理生理学和针对 STN 的治疗也很重要。STN 的损伤或高频刺激的应用可以改善帕金森病症状。这些程序可能会影响 STN 中的所有成分,例如通过超直接和间接途径的传入输入,以及 STN 神经元的活动。如果我们能理解哪些成分受这些程序的影响最大,我们也许就能确定更有效的操作靶点或方法来治疗帕金森病。