Suppr超能文献

使用多通道小波框架的分组迭代硬阈值法去噪扩散加权图像

Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets.

作者信息

Zhang Jian, Chen Geng, Zhang Yong, Dong Bin, Shen Dinggang, Yap Pew-Thian

机构信息

School of Information and Electrical Engineering, Hunan University of Science & Technology, Xiangtan, China.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A.

出版信息

Comput Diffus MRI. 2016 Oct;2016:49-59. doi: 10.1007/978-3-319-54130-3_4. Epub 2017 May 13.

Abstract

Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (i) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (ii) introduces a very efficient method for solving an denoising problem that involves only thresholding and solving a trivial inverse problem; and (iii) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.

摘要

扩散加权(DW)图像中的噪声增加了定量分析的复杂性,并降低了推理的可靠性。因此,为了改进分析,通常希望去除噪声并同时保留相关的图像特征。在本文中,我们提出了一种基于紧小波框架的方法,用于DW图像的保边缘去噪。我们的方法:(i)采用酉扩展原理(UEP)来生成与各阶微分算子的离散类似物的框架;(ii)引入一种非常有效的方法来解决仅涉及阈值处理和求解一个平凡逆问题的去噪问题;(iii)将具有相邻梯度方向采集的DW图像分组进行协同去噪。使用具有非中心卡方噪声的合成数据和具有重复扫描的真实数据进行的实验证实,与使用诸如非局部均值等现有方法进行去噪相比,我们的方法具有卓越的性能。

相似文献

2
Multi-channel framelet denoising of diffusion-weighted images.多通道框架子波去噪扩散加权图像。
PLoS One. 2019 Feb 6;14(2):e0211621. doi: 10.1371/journal.pone.0211621. eCollection 2019.
3
Tight Graph Framelets for Sparse Diffusion MRI -Space Representation.用于稀疏扩散磁共振成像 - 空间表示的紧框架小波
Med Image Comput Comput Assist Interv. 2016 Oct;9902:561-569. doi: 10.1007/978-3-319-46726-9_65. Epub 2016 Oct 2.
6
Denoising Magnetic Resonance Images Using Collaborative Non-Local Means.使用协作非局部均值去噪磁共振图像
Neurocomputing (Amst). 2016 Feb 12;177:215-227. doi: 10.1016/j.neucom.2015.11.031.
8
Denoise diffusion-weighted images using higher-order singular value decomposition.使用高阶奇异值分解去噪扩散加权图像。
Neuroimage. 2017 Aug 1;156:128-145. doi: 10.1016/j.neuroimage.2017.04.017. Epub 2017 Apr 15.
9
COLLABORATIVE NON-LOCAL MEANS DENOISING OF MAGNETIC RESONANCE IMAGES.磁共振图像的协作非局部均值去噪
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:564-567. doi: 10.1109/isbi.2015.7163936. Epub 2015 Jul 23.
10
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.用于复杂磁共振数据去噪的小波域TI类维纳滤波
Magn Reson Imaging. 2016 Oct;34(8):1128-40. doi: 10.1016/j.mri.2016.05.011. Epub 2016 May 26.

引用本文的文献

1
Multi-channel framelet denoising of diffusion-weighted images.多通道框架子波去噪扩散加权图像。
PLoS One. 2019 Feb 6;14(2):e0211621. doi: 10.1371/journal.pone.0211621. eCollection 2019.

本文引用的文献

1
FALSE DISCOVERY RATE ANALYSIS OF BRAIN DIFFUSION DIRECTION MAPS.脑扩散方向图的错误发现率分析
Ann Appl Stat. 2008 Mar;2(1):153-175. doi: 10.1214/07-AOAS133. Epub 2008 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验