Zhang Jian, Chen Geng, Zhang Yong, Dong Bin, Shen Dinggang, Yap Pew-Thian
School of Information and Electrical Engineering, Hunan University of Science & Technology, Xiangtan, China.
Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A.
Comput Diffus MRI. 2016 Oct;2016:49-59. doi: 10.1007/978-3-319-54130-3_4. Epub 2017 May 13.
Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (i) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (ii) introduces a very efficient method for solving an denoising problem that involves only thresholding and solving a trivial inverse problem; and (iii) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.
扩散加权(DW)图像中的噪声增加了定量分析的复杂性,并降低了推理的可靠性。因此,为了改进分析,通常希望去除噪声并同时保留相关的图像特征。在本文中,我们提出了一种基于紧小波框架的方法,用于DW图像的保边缘去噪。我们的方法:(i)采用酉扩展原理(UEP)来生成与各阶微分算子的离散类似物的框架;(ii)引入一种非常有效的方法来解决仅涉及阈值处理和求解一个平凡逆问题的去噪问题;(iii)将具有相邻梯度方向采集的DW图像分组进行协同去噪。使用具有非中心卡方噪声的合成数据和具有重复扫描的真实数据进行的实验证实,与使用诸如非局部均值等现有方法进行去噪相比,我们的方法具有卓越的性能。