Suppr超能文献

用于稀疏扩散磁共振成像 - 空间表示的紧框架小波

Tight Graph Framelets for Sparse Diffusion MRI -Space Representation.

作者信息

Yap Pew-Thian, Dong Bin, Zhang Yong, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina, Chapel Hill, U.S.A.

Beijing International Center for Mathematical Research, Peking University, Beijing, China.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9902:561-569. doi: 10.1007/978-3-319-46726-9_65. Epub 2016 Oct 2.

Abstract

In diffusion MRI, the outcome of estimation problems can often be improved by taking into account the correlation of diffusion-weighted images scanned with neighboring wavevectors in -space. For this purpose, we propose in this paper to employ tight wavelet frames constructed on non-flat domains for multi-scale sparse representation of diffusion signals. This representation is well suited for signals sampled regularly or irregularly, such as on a grid or on multiple shells, in -space. Using spectral graph theory, the frames are constructed based on quasi-affine systems (i.e., generalized dilations and shifts of a finite collection of wavelet functions) defined on graphs, which can be seen as a discrete representation of manifolds. The associated wavelet analysis and synthesis transforms can be computed efficiently and accurately without the need for explicit eigen-decomposition of the graph Laplacian, allowing scalability to very large problems. We demonstrate the effectiveness of this representation, generated using what we call , in two specific applications: denoising and super-resolution in -space using ℓ regularization. The associated optimization problem involves only thresholding and solving a trivial inverse problem in an iterative manner. The effectiveness of graph framelets is confirmed via evaluation using synthetic data with noncentral chi noise and real data with repeated scans.

摘要

在扩散磁共振成像中,通过考虑在空间中用相邻波矢扫描的扩散加权图像的相关性,估计问题的结果通常可以得到改善。为此,我们在本文中提出采用在非平坦域上构造的紧小波框架,用于扩散信号的多尺度稀疏表示。这种表示非常适合于在空间中规则或不规则采样的信号,例如在网格或多个球壳上采样的信号。利用谱图理论,基于定义在图上的拟仿射系统(即有限小波函数集合的广义伸缩和平移)构造框架,图可视为流形的离散表示。相关的小波分析和合成变换可以高效、准确地计算,而无需对图拉普拉斯算子进行显式特征分解,从而能够扩展到非常大的问题。我们在两个具体应用中展示了使用我们所谓的生成的这种表示的有效性:在空间中使用ℓ正则化进行去噪和超分辨率。相关的优化问题仅涉及阈值处理和以迭代方式求解一个简单的逆问题。通过使用具有非中心卡方噪声的合成数据和具有重复扫描的真实数据进行评估,证实了图小波框架的有效性。

相似文献

1
Tight Graph Framelets for Sparse Diffusion MRI -Space Representation.用于稀疏扩散磁共振成像 - 空间表示的紧框架小波
Med Image Comput Comput Assist Interv. 2016 Oct;9902:561-569. doi: 10.1007/978-3-319-46726-9_65. Epub 2016 Oct 2.
3
Multi-channel framelet denoising of diffusion-weighted images.多通道框架子波去噪扩散加权图像。
PLoS One. 2019 Feb 6;14(2):e0211621. doi: 10.1371/journal.pone.0211621. eCollection 2019.
4
XQ-NLM: Denoising Diffusion MRI Data via Space Non-Local Patch Matching.XQ-NLM:通过空间非局部补丁匹配去噪扩散磁共振成像数据
Med Image Comput Comput Assist Interv. 2016 Oct;9902:587-595. doi: 10.1007/978-3-319-46726-9_68. Epub 2016 Oct 2.
6
Neighborhood Matching for Curved Domains with Application to Denoising in Diffusion MRI.用于曲面区域的邻域匹配及其在扩散磁共振成像去噪中的应用
Med Image Comput Comput Assist Interv. 2017 Sep;10433:629-637. doi: 10.1007/978-3-319-66182-7_72. Epub 2017 Sep 4.
9
EIT Imaging Regularization Based on Spectral Graph Wavelets.基于谱图小波的 EIT 图像正则化。
IEEE Trans Med Imaging. 2017 Sep;36(9):1832-1844. doi: 10.1109/TMI.2017.2716825. Epub 2017 Jun 16.
10
Structure-adaptive sparse denoising for diffusion-tensor MRI.结构自适应稀疏去噪在扩散张量 MRI 中的应用。
Med Image Anal. 2013 May;17(4):442-57. doi: 10.1016/j.media.2013.01.006. Epub 2013 Feb 17.

引用本文的文献

3
Multi-Site Harmonization of Diffusion MRI Data via Method of Moments.基于矩量法的多部位弥散磁共振数据的协调
IEEE Trans Med Imaging. 2019 Jul;38(7):1599-1609. doi: 10.1109/TMI.2019.2895020. Epub 2019 Jan 24.
5
Neighborhood Matching for Curved Domains with Application to Denoising in Diffusion MRI.用于曲面区域的邻域匹配及其在扩散磁共振成像去噪中的应用
Med Image Comput Comput Assist Interv. 2017 Sep;10433:629-637. doi: 10.1007/978-3-319-66182-7_72. Epub 2017 Sep 4.
6
-Space Upsampling Using - Space Regularization.- 使用空间正则化的空间上采样
Med Image Comput Comput Assist Interv. 2017 Sep;10433:620-628. doi: 10.1007/978-3-319-66182-7_71. Epub 2017 Sep 4.

本文引用的文献

1
Diffusion Compartmentalization Using Response Function Groups with Cardinality Penalization.使用具有基数惩罚的响应函数组进行扩散分区
Med Image Comput Comput Assist Interv. 2015 Oct;9349:183-190. doi: 10.1007/978-3-319-24553-9_23. Epub 2015 Nov 18.
2
On approximation of orientation distributions by means of spherical ridgelets.基于球脊波的方向分布逼近。
IEEE Trans Image Process. 2010 Feb;19(2):461-77. doi: 10.1109/TIP.2009.2035886. Epub 2009 Nov 3.
4
Q-ball imaging.Q球成像
Magn Reson Med. 2004 Dec;52(6):1358-72. doi: 10.1002/mrm.20279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验