Snelling Edward P, Biewener Andrew A, Hu Qiaohui, Taggart David A, Fuller Andrea, Mitchell Duncan, Maloney Shane K, Seymour Roger S
Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.
School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
J Anat. 2017 Dec;231(6):921-930. doi: 10.1111/joa.12715. Epub 2017 Oct 16.
Bipedal hopping is used by macropods, including rat-kangaroos, wallabies and kangaroos (superfamily Macropodoidea). Interspecific scaling of the ankle extensor muscle-tendon units in the lower hindlimbs of these hopping bipeds shows that peak tendon stress increases disproportionately with body size. Consequently, large kangaroos store and recover more strain energy in their tendons, making hopping more efficient, but their tendons are at greater risk of rupture. This is the first intraspecific scaling analysis on the functional morphology of the ankle extensor muscle-tendon units (gastrocnemius, plantaris and flexor digitorum longus) in one of the largest extant species of hopping mammal, the western grey kangaroo Macropus fuliginosus (5.8-70.5 kg post-pouch body mass). The effective mechanical advantage of the ankle extensors does not vary with post-pouch body mass, scaling with an exponent not significantly different from 0.0. Therefore, larger kangaroos balance rotational moments around the ankle by generating muscle forces proportional to weight-related gravitational forces. Maximum force is dependent upon the physiological cross-sectional area of the muscle, which we found scales geometrically with a mean exponent of only 0.67, rather than 1.0. Therefore, larger kangaroos are limited in their capacity to oppose large external forces around the ankle, potentially compromising fast or accelerative hopping. The strain energy return capacity of the ankle extensor tendons increases with a mean exponent of 1.0, which is much shallower than the exponent derived from interspecific analyses of hopping mammals (1.4-1.9). Tendon safety factor (ratio of rupture stress to estimated peak hopping stress) is lowest in the gastrocnemius (< 2), and it decreases with body mass with an exponent of -0.15, extrapolating to a predicted rupture at 160 kg. Extinct giant kangaroos weighing 250 kg could therefore not have engaged in fast hopping using 'scaled-up' lower hindlimb morphology of extant western grey kangaroos.
包括鼠袋鼠、小袋鼠和袋鼠(大袋鼠超科)在内的有袋目动物会采用双足跳跃的方式。对这些双足跳跃动物后肢下部的踝伸肌肌腱单元进行种间尺度分析表明,峰值肌腱应力随体型增大而不成比例地增加。因此,大型袋鼠的肌腱能储存和恢复更多的应变能,使跳跃更高效,但它们的肌腱断裂风险也更高。这是对现存最大的跳跃哺乳动物之一——西部灰袋鼠(大赤袋鼠,育儿袋后体重5.8 - 70.5千克)的踝伸肌肌腱单元(腓肠肌、跖肌和趾长屈肌)功能形态进行的首次种内尺度分析。踝伸肌的有效机械优势并不随育儿袋后体重而变化,其缩放指数与0.0无显著差异。因此,体型较大的袋鼠通过产生与体重相关的重力成正比的肌肉力量来平衡踝关节周围的旋转力矩。最大力量取决于肌肉的生理横截面积,我们发现其按几何比例缩放,平均指数仅为0.67,而非1.0。因此,体型较大的袋鼠抵抗踝关节周围巨大外力的能力有限,这可能会影响快速或加速跳跃。踝伸肌肌腱的应变能恢复能力以平均指数约1.0增加,这比从跳跃哺乳动物的种间分析得出的指数(约1.4 - 1.9)要浅得多。腓肠肌的肌腱安全系数(断裂应力与估计的峰值跳跃应力之比)最低(< 2),且随体重以指数 -0.15下降,外推至160千克时预计会断裂。因此,体重达250千克的已灭绝巨型袋鼠不可能利用现存西部灰袋鼠“放大”的后肢下部形态进行快速跳跃。