Suppr超能文献

基于任务驱动的计算机断层扫描中基于模型的迭代重建的注量场优化与正则化

Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

作者信息

Gang Grace J, Siewerdsen Jeffrey H, Stayman J Webster

出版信息

IEEE Trans Med Imaging. 2017 Dec;36(12):2424-2435. doi: 10.1109/TMI.2017.2763538. Epub 2017 Oct 16.

Abstract

This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

摘要

本文提出了一种在二次惩罚似然重建中对动态注量场调制(FFM)和正则化进行联合优化的方法,该方法可使基于任务的成像性能指标最大化。我们采用了一种任务驱动的成像框架来进行成像参数的前瞻性设计。采用了一个极大极小目标函数来使整个图像中的最小可检测性指数( )最大化。优化算法在FFM(由低维基函数表示)和局部正则化(包括正则化强度和方向惩罚权重)之间交替进行。将任务驱动方法与通常为FBP重建提出的三种FFM策略(以及一种任务驱动的TCM策略)进行比较,用于腹部体模中的辨别任务。任务驱动的FFM将更多的注量分配给衰减较小的前后视图,并在物体后方产生近似恒定的注量。最佳正则化在整个图像中几乎是均匀的。此外,任务驱动的FFM策略在探测器元件之间重新分配注量,以便为体模中衰减较大的中心区域规定更多的注量。与所有策略相比,任务驱动的FFM策略不仅将最小值提高了至少17.8%,而且在物体内部的大面积区域产生了更高的 。最佳FFM高度依赖于正则化量,这表明联合优化的重要性。模拟数据的样本重建通常支持基于计算出的 的性能估计。可检测性的提高表明了任务驱动成像框架在固定剂量下提高成像性能的潜力,或者等效地,在降低剂量下提供相似水平性能的潜力。

相似文献

1
Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.
IEEE Trans Med Imaging. 2017 Dec;36(12):2424-2435. doi: 10.1109/TMI.2017.2763538. Epub 2017 Oct 16.
2
Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction.
Phys Med Biol. 2017 Jun 21;62(12):4777-4797. doi: 10.1088/1361-6560/aa6a97. Epub 2017 Mar 31.
3
Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132. doi: 10.1117/12.2255517. Epub 2017 Mar 9.
4
Task-Based Design of Fluence Field Modulation in CT for Model-Based Iterative Reconstruction.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2016 Jul;2016:407-410.
5
Task-based statistical image reconstruction for high-quality cone-beam CT.
Phys Med Biol. 2017 Nov 1;62(22):8693-8719. doi: 10.1088/1361-6560/aa90fd.
6
Joint Optimization of Fluence Field Modulation and Regularization for Multi-Task Objectives.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2294950. Epub 2018 Mar 9.
7
An optimization algorithm for dose reduction with fluence-modulated proton CT.
Med Phys. 2020 Apr;47(4):1895-1906. doi: 10.1002/mp.14084. Epub 2020 Mar 3.
9
Dynamic fluence field modulation in computed tomography using multiple aperture devices.
Phys Med Biol. 2019 May 21;64(10):105024. doi: 10.1088/1361-6560/ab155e.
10
Task-Driven Tube Current Modulation and Regularization Design in Computed Tomography with Penalized-Likelihood Reconstruction.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9783. doi: 10.1117/12.2216387. Epub 2016 Mar 25.

引用本文的文献

1
Tunable neural networks for CT image formation.
J Med Imaging (Bellingham). 2023 May;10(3):033501. doi: 10.1117/1.JMI.10.3.033501. Epub 2023 May 4.
2
Control of Variance and Bias in CT Image Processing with Variational Training of Deep Neural Networks.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612417. Epub 2022 Apr 4.
3
C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
Phys Med Biol. 2020 Aug 19;65(16):165012. doi: 10.1088/1361-6560/ab9454.
4
Task-driven source-detector trajectories in cone-beam computed tomography: I. Theory and methods.
J Med Imaging (Bellingham). 2019 Apr;6(2):025002. doi: 10.1117/1.JMI.6.2.025002. Epub 2019 May 2.
5
Dynamic fluence field modulation in computed tomography using multiple aperture devices.
Phys Med Biol. 2019 May 21;64(10):105024. doi: 10.1088/1361-6560/ab155e.
6
A Statistical Model for Rigid Image Registration Performance: The Influence of Soft-Tissue Deformation as a Confounding Noise Source.
IEEE Trans Med Imaging. 2019 Sep;38(9):2016-2027. doi: 10.1109/TMI.2019.2907868. Epub 2019 Mar 27.
7
Implementation and Assessment of Dynamic Fluence Field Modulation with Multiple Aperture Devices.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2018 May;2018:47-51.
9
Dynamic fluence field modulation for miscentered patients in computed tomography.
J Med Imaging (Bellingham). 2018 Oct;5(4):043501. doi: 10.1117/1.JMI.5.4.043501. Epub 2018 Oct 24.
10
Fluid-filled dynamic bowtie filter: Description and comparison with other modulators.
Med Phys. 2019 Jan;46(1):127-139. doi: 10.1002/mp.13272. Epub 2018 Nov 29.

本文引用的文献

1
Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132. doi: 10.1117/12.2255517. Epub 2017 Mar 9.
2
Experimental evaluation of dual Multiple Aperture Devices for Fluence Field Modulated X-Ray Computed Tomography.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132. doi: 10.1117/12.2255677. Epub 2017 Mar 9.
3
Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction.
Phys Med Biol. 2017 Jun 21;62(12):4777-4797. doi: 10.1088/1361-6560/aa6a97. Epub 2017 Mar 31.
4
Task-Driven Tube Current Modulation and Regularization Design in Computed Tomography with Penalized-Likelihood Reconstruction.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9783. doi: 10.1117/12.2216387. Epub 2016 Mar 25.
5
Fluence-Field Modulated X-ray CT using Multiple Aperture Devices.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9783. doi: 10.1117/12.2214358. Epub 2016 Mar 22.
6
Task-driven image acquisition and reconstruction in cone-beam CT.
Phys Med Biol. 2015 Apr 21;60(8):3129-50. doi: 10.1088/0031-9155/60/8/3129. Epub 2015 Mar 24.
7
Task-based measures of image quality and their relation to radiation dose and patient risk.
Phys Med Biol. 2015 Jan 21;60(2):R1-75. doi: 10.1088/0031-9155/60/2/R1. Epub 2015 Jan 7.
9
Dynamic bowtie filter for cone-beam/multi-slice CT.
PLoS One. 2014 Jul 22;9(7):e103054. doi: 10.1371/journal.pone.0103054. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验