Gang Grace J, Siewerdsen Jeffrey H, Stayman J Webster
IEEE Trans Med Imaging. 2017 Dec;36(12):2424-2435. doi: 10.1109/TMI.2017.2763538. Epub 2017 Oct 16.
This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.
本文提出了一种在二次惩罚似然重建中对动态注量场调制(FFM)和正则化进行联合优化的方法,该方法可使基于任务的成像性能指标最大化。我们采用了一种任务驱动的成像框架来进行成像参数的前瞻性设计。采用了一个极大极小目标函数来使整个图像中的最小可检测性指数( )最大化。优化算法在FFM(由低维基函数表示)和局部正则化(包括正则化强度和方向惩罚权重)之间交替进行。将任务驱动方法与通常为FBP重建提出的三种FFM策略(以及一种任务驱动的TCM策略)进行比较,用于腹部体模中的辨别任务。任务驱动的FFM将更多的注量分配给衰减较小的前后视图,并在物体后方产生近似恒定的注量。最佳正则化在整个图像中几乎是均匀的。此外,任务驱动的FFM策略在探测器元件之间重新分配注量,以便为体模中衰减较大的中心区域规定更多的注量。与所有策略相比,任务驱动的FFM策略不仅将最小值提高了至少17.8%,而且在物体内部的大面积区域产生了更高的 。最佳FFM高度依赖于正则化量,这表明联合优化的重要性。模拟数据的样本重建通常支持基于计算出的 的性能估计。可检测性的提高表明了任务驱动成像框架在固定剂量下提高成像性能的潜力,或者等效地,在降低剂量下提供相似水平性能的潜力。