Tivnan Matthew, Wang Wenying, Gang Grace, Noël Peter, Stayman J Webster
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD.
Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612417. Epub 2022 Apr 4.
Optimization of CT image quality typically involves balancing noise and bias. In filtered back-projection, this trade-off is controlled by the particular filter and cutoff frequency. In penalized-likelihood iterative reconstruction, the penalty weight serves the same function. Deep neural networks typically do not provide this tuneable control over output image properties. Models are often trained to minimize mean squared error which penalizes both variance and bias in image outputs but does not offer any control over the trade-off between the two. In this work, we propose a method for controlling the output image properties of neural networks with a new loss function called weighted covariance and bias (WCB). Our proposed method includes separate weighting parameters to control the relative importance of noise or bias reduction. Moreover, we show that tuning these weights enables targeted penalization of specific image features (e.g. spatial frequencies). To evaluate our method, we present a simulation study using digital anthropormorphic phantoms, physical simulation of non-ideal CT data, and image formation with various algorithms. We show that WCB offers a greater degree of control over trade-offs between variance and bias whereas MSE has only one configuration. We also show that WCB can be used to control specific image properties including variance, bias, spatial resolution, and the noise correlation of neural network outputs. Finally, we present a method to optimize the proposed weights for stimulus detectability. Our results demonstrate the potential for this new capability to control the image properties of DNN outputs and optimize image quality for the task-specific applications.
CT图像质量的优化通常涉及平衡噪声和偏差。在滤波反投影中,这种权衡由特定的滤波器和截止频率控制。在惩罚似然迭代重建中,惩罚权重起着相同的作用。深度神经网络通常无法对输出图像属性提供这种可调节的控制。模型通常被训练以最小化均方误差,这会同时惩罚图像输出中的方差和偏差,但无法对两者之间的权衡进行任何控制。在这项工作中,我们提出了一种使用称为加权协方差和偏差(WCB)的新损失函数来控制神经网络输出图像属性的方法。我们提出的方法包括单独的加权参数,以控制减少噪声或偏差的相对重要性。此外,我们表明调整这些权重能够对特定图像特征(例如空间频率)进行有针对性的惩罚。为了评估我们的方法,我们进行了一项模拟研究,使用数字人体模型、非理想CT数据的物理模拟以及各种算法进行图像生成。我们表明,WCB在方差和偏差之间的权衡方面提供了更大程度的控制,而均方误差只有一种配置。我们还表明,WCB可用于控制特定的图像属性,包括方差、偏差、空间分辨率以及神经网络输出的噪声相关性。最后,我们提出了一种针对刺激可检测性优化所提出权重的方法。我们的结果证明了这种控制DNN输出图像属性并针对特定任务应用优化图像质量的新能力的潜力。