Boyd Philip W, Bressac Matthieu
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Antarctic Climate and Ecosystems Collaborative Research Centre, University of Tasmania, Hobart, Tasmania, Australia.
Philos Trans A Math Phys Eng Sci. 2016 Nov 28;374(2081). doi: 10.1098/rsta.2015.0299.
Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' ( Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
长期以来,人们一直提议通过地球工程来缓解气候变化,但该提议仍不明确。探索地球工程的可行性首先需要制定研究治理措施,以超越概念层面,开展科学设计的试点研究。幸运的是,12次中尺度(约1000公里)铁元素添加实验获得了资助,其目的是研究海洋铁生物地球化学在地质历史时期如何改变地球的碳循环,这些实验为更好地理解地球工程的利弊提供了参照。地球化学追踪(GEOTRACES)全球调查提升了这些铁元素添加实验在地球工程辩论中的效用。在此,我们概述了地球化学追踪调查和过程研究如何能为地球工程提供宝贵见解。调查揭示了一些关键未知因素,包括铁供应方式的区域影响和规模,并推动了铁生物地球化学建模。这些进展将能够量化铁供应的年际变化,以评估未来任何有目的的多年铁施肥是否符合“额外性”原则(《京都议定书》)。过程研究解决了包括地球工程规模扩大以及不同铁添加策略如何能引发广泛生物地球化学结果等问题。总之,中尺度铁添加研究和地球化学追踪调查的数据库,以及建模、政策举措和立法,已将铁添加方法定位为一个强大的多方面试验台,用于评估拟议的气候干预研究。本文是主题为“海洋微量元素化学的生物和气候影响”的特刊的一部分。