Suppr超能文献

HetFHMM:一种使用因子隐马尔可夫模型推断肿瘤异质性的新方法。

HetFHMM: A Novel Approach to Infer Tumor Heterogeneity Using Factorial Hidden Markov Models.

作者信息

Rahman Mohammad S, Nicholson Ann E, Haffari Gholamreza

机构信息

Clayton School of Information Technology, Monash University , Clayton, Australia .

出版信息

J Comput Biol. 2018 Feb;25(2):182-193. doi: 10.1089/cmb.2017.0101. Epub 2017 Oct 16.

Abstract

Cancer arises from successive rounds of mutations, resulting in tumor cells with different somatic mutations known as clones. Drug responsiveness and therapeutics of cancer depend on the accurate detection of clones in a tumor sample. Recent research has considered inferring clonal composition of a tumor sample using computational models based on short read data of the sample generated using next-generation sequencing (NGS) technology. Short reads (segmented DNA parts of different tumor cells) are noisy; therefore, inferring the clones and their mutations from the data is a difficult and complex problem. We develop a new model called HetFHMM, based on factorial hidden Markov models, to infer clones and their proportions from noisy NGS data. In our model, each hidden chain represents the genomic signature of a clone, and a mixture of chains results in the observed data. We make use of Gibbs sampling and exponentiated gradient algorithms to infer the hidden variables and mixing proportions. We compare our model with strong models from previous work (PyClone and PhyloSub) based on both synthetic data and real cancer data on acute myeloid leukemia. Empirical results confirm that HetFHMM infers clonal composition of a tumor sample more accurately than previous work.

摘要

癌症源于连续的多轮突变,产生具有不同体细胞突变的肿瘤细胞,即克隆。癌症的药物反应性和治疗方法取决于肿瘤样本中克隆的准确检测。最近的研究考虑使用基于下一代测序(NGS)技术生成的样本短读数据的计算模型来推断肿瘤样本的克隆组成。短读(不同肿瘤细胞的分段DNA部分)存在噪声;因此,从数据中推断克隆及其突变是一个困难且复杂的问题。我们基于因子隐马尔可夫模型开发了一种名为HetFHMM的新模型,以从有噪声的NGS数据中推断克隆及其比例。在我们的模型中,每个隐藏链代表一个克隆的基因组特征,链的混合产生观测数据。我们利用吉布斯采样和指数梯度算法来推断隐藏变量和混合比例。我们基于合成数据和急性髓系白血病的真实癌症数据,将我们的模型与先前工作中的强大模型(PyClone和PhyloSub)进行比较。实证结果证实,HetFHMM比先前工作更准确地推断肿瘤样本的克隆组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验