Suppr超能文献

在有限数据的锥形束 CT 重建中使用边缘保持全变分算法进行参数选择。

Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms.

机构信息

Engineering Tomography Lab (ETL), University of Bath, Bath, United Kingdom.

出版信息

Phys Med Biol. 2017 Nov 21;62(24):9295-9321. doi: 10.1088/1361-6560/aa93d3.

Abstract

There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

摘要

有许多强大的全变差(TV)正则化方法,它们在有限数据的锥束 CT 重建中具有很大的潜力,可以提高图像质量。这些很有前途的 TV 方法需要仔细选择图像重建参数,而对于这些参数,还没有确立的标准。本文对几种主要基于 TV 的重建算法中的参数选择进行了全面评估。提出了一种为每个单独参数选择值的合适方法。最后,提出了一种新的自适应加权投影控制最速下降(AwPCSD)算法,该算法实现了有限数据锥束 CT 重建的边缘保持功能。与其他三种现有算法(ASD-POCS、AwASD-POCS 和 PCSD)相比,所提出的算法具有显著的鲁棒性。所提出的 AwPCSD 算法能够更好地保持重建图像的边缘,并且需要调整的敏感参数更少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验