Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, 82152 Munich, Germany.
Bioinformatics. 2017 Nov 1;33(21):3486-3488. doi: 10.1093/bioinformatics/btx435.
SUMMARY: Power analysis is essential to optimize the design of RNA-seq experiments and to assess and compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is a flexible tool to simulate and evaluate differential expression from bulk and especially single-cell RNA-seq data making it suitable for a priori and posterior power analyses. AVAILABILITY AND IMPLEMENTATION: The R package and associated tutorial are freely available at https://github.com/bvieth/powsimR. CONTACT: vieth@bio.lmu.de or hellmann@bio.lmu.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
摘要:为了优化 RNA-seq 实验的设计,并评估和比较在 RNA-seq 数据中检测差异表达基因的能力,进行功效分析至关重要。PowsimR 是一种灵活的工具,可用于模拟和评估批量和特别是单细胞 RNA-seq 数据中的差异表达,使其适合先验和后验功效分析。
可用性和实现:R 包和相关教程可在 https://github.com/bvieth/powsimR 上免费获得。
联系方式:vieth@bio.lmu.de 或 hellmann@bio.lmu.de。
补充信息:补充数据可在生物信息学在线获得。
Bioinformatics. 2017-11-1
Bioinformatics. 2017-10-15
Bioinformatics. 2022-9-16
Bioinformatics. 2015-7-1
Bioinformatics. 2017-3-1
Bioinformatics. 2017-3-1
Bioinformatics. 2018-9-15
Bioinformatics. 2018-9-15
Nat Commun. 2025-8-6
Nat Commun. 2025-2-22
Res Sq. 2024-8-7
bioRxiv. 2024-12-13