文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

powsimR:用于批量和单细胞 RNA-seq 实验的功效分析。

powsimR: power analysis for bulk and single cell RNA-seq experiments.

机构信息

Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University, 82152 Munich, Germany.

出版信息

Bioinformatics. 2017 Nov 1;33(21):3486-3488. doi: 10.1093/bioinformatics/btx435.


DOI:10.1093/bioinformatics/btx435
PMID:29036287
Abstract

SUMMARY: Power analysis is essential to optimize the design of RNA-seq experiments and to assess and compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is a flexible tool to simulate and evaluate differential expression from bulk and especially single-cell RNA-seq data making it suitable for a priori and posterior power analyses. AVAILABILITY AND IMPLEMENTATION: The R package and associated tutorial are freely available at https://github.com/bvieth/powsimR. CONTACT: vieth@bio.lmu.de or hellmann@bio.lmu.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

摘要:为了优化 RNA-seq 实验的设计,并评估和比较在 RNA-seq 数据中检测差异表达基因的能力,进行功效分析至关重要。PowsimR 是一种灵活的工具,可用于模拟和评估批量和特别是单细胞 RNA-seq 数据中的差异表达,使其适合先验和后验功效分析。

可用性和实现:R 包和相关教程可在 https://github.com/bvieth/powsimR 上免费获得。

联系方式:vieth@bio.lmu.de 或 hellmann@bio.lmu.de。

补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
powsimR: power analysis for bulk and single cell RNA-seq experiments.

Bioinformatics. 2017-11-1

[2]
ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.

Bioinformatics. 2017-10-1

[3]
pulseR: Versatile computational analysis of RNA turnover from metabolic labeling experiments.

Bioinformatics. 2017-10-15

[4]
SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.

Bioinformatics. 2022-9-16

[5]
Normalization and noise reduction for single cell RNA-seq experiments.

Bioinformatics. 2015-7-1

[6]
ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

Bioinformatics. 2017-3-1

[7]
DaMiRseq-an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification.

Bioinformatics. 2018-4-15

[8]
Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.

Bioinformatics. 2017-3-1

[9]
DEsingle for detecting three types of differential expression in single-cell RNA-seq data.

Bioinformatics. 2018-9-15

[10]
CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.

Bioinformatics. 2018-9-15

引用本文的文献

[1]
scCOSMIX: A Mixed-Effects Framework for Differential Coexpression and Transcriptional Interactions Modeling in Single-Cell RNA-Seq.

Stat Med. 2025-8

[2]
How thoughtful experimental design can empower biologists in the omics era.

Nat Commun. 2025-8-6

[3]
Optimizing sample size for supervised machine learning with bulk transcriptomic sequencing: a learning curve approach.

Brief Bioinform. 2025-3-4

[4]
Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data.

Nat Protoc. 2025-3-4

[5]
Interpretable single-cell factor decomposition using sciRED.

Nat Commun. 2025-2-22

[6]
Primary cartilage transcriptional signatures reflect cell-type-specific molecular pathways underpinning osteoarthritis.

Am J Hum Genet. 2024-12-5

[7]
Optimizing Sample Size for Supervised Machine Learning with Bulk Transcriptomic Sequencing: A Learning Curve Approach.

ArXiv. 2024-9-10

[8]
A distribution-free and analytic method for power and sample size calculation in single-cell differential expression.

Bioinformatics. 2024-9-2

[9]
Interpretable single-cell factor decomposition using sciRED.

Res Sq. 2024-8-7

[10]
Interpretable single-cell factor decomposition using sciRED.

bioRxiv. 2024-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索