文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ImpulseDE:使用脉冲模型检测时间序列数据中的差异表达基因。

ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

作者信息

Sander Jil, Schultze Joachim L, Yosef Nir

机构信息

Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, 53115, Germany.

Single Cell Genomics and Epigenomics Unit at the University of Bonn and the German Center for Neurodegenerative Diseases, Bonn, Germany.

出版信息

Bioinformatics. 2017 Mar 1;33(5):757-759. doi: 10.1093/bioinformatics/btw665.


DOI:10.1093/bioinformatics/btw665
PMID:27797772
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5859984/
Abstract

SUMMARY: Perturbations in the environment lead to distinctive gene expression changes within a cell. Observed over time, those variations can be characterized by single impulse-like progression patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series datasets. By fitting a representative impulse model to each gene, it reports differentially expressed genes across time points from a single or between two time courses from two experiments. To optimize running time, the code uses clustering and multi-threading. By applying ImpulseDE , we demonstrate its power to represent underlying biology of gene expression in microarray and RNA-Seq data. AVAILABILITY AND IMPLEMENTATION: ImpulseDE is available on Bioconductor ( https://bioconductor.org/packages/ImpulseDE/ ). CONTACT: niryosef@berkeley.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

摘要:环境扰动会导致细胞内基因表达发生独特变化。随着时间的推移,这些变化可以通过单一脉冲样的进展模式来表征。ImpulseDE是一个R包,适用于在高通量时间序列数据集中捕捉这些模式。通过为每个基因拟合一个代表性的脉冲模型,它可以报告来自单个时间进程或两个实验的两个时间进程中各时间点的差异表达基因。为了优化运行时间,该代码使用了聚类和多线程技术。通过应用ImpulseDE,我们展示了它在微阵列和RNA测序数据中表征基因表达潜在生物学特性的能力。 可用性和实现方式:ImpulseDE可在Bioconductor上获取(https://bioconductor.org/packages/ImpulseDE/)。 联系方式:niryosef@berkeley.edu。 补充信息:补充数据可在《生物信息学》在线版获取。

相似文献

[1]
ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

Bioinformatics. 2017-3-1

[2]
Identification and visualization of differential isoform expression in RNA-seq time series.

Bioinformatics. 2018-2-1

[3]
DaMiRseq-an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification.

Bioinformatics. 2018-4-15

[4]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

[5]
QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data.

Bioinformatics. 2017-2-1

[6]
switchde: inference of switch-like differential expression along single-cell trajectories.

Bioinformatics. 2017-4-15

[7]
powsimR: power analysis for bulk and single cell RNA-seq experiments.

Bioinformatics. 2017-11-1

[8]
ctsGE-clustering subgroups of expression data.

Bioinformatics. 2017-7-1

[9]
Polyester: simulating RNA-seq datasets with differential transcript expression.

Bioinformatics. 2015-9-1

[10]
RNASeqGUI: a GUI for analysing RNA-Seq data.

Bioinformatics. 2014-9-1

引用本文的文献

[1]
Generating Functional and Highly Proliferative Melanocytes Derived from Human Pluripotent Stem Cells: A Promising Tool for Biotherapeutic Approaches to Treat Skin Pigmentation Disorders.

Int J Mol Sci. 2023-3-29

[2]
Integrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severity.

J Med Virol. 2023-2

[3]
Multispecies transcriptomes reveal core fruit development genes.

Front Plant Sci. 2022-11-4

[4]
Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime.

Bioinformatics. 2022-8-10

[5]
Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense.

Dev Cell. 2022-2-28

[6]
Nanopore Assay Reveals Cell-Type-Dependent Gene Expression of Vesicular Stomatitis Indiana Virus and Differential Host Cell Response.

Pathogens. 2021-9-15

[7]
Time Course Transcriptomic Study Reveals the Gene Regulation During Liver Development and the Correlation With Abdominal Fat Weight in Chicken.

Front Genet. 2021-9-10

[8]
Gastrodin Exerts Cardioprotective Action via Inhibition of Insulin-Like Growth Factor Type 2/Insulin-Like Growth Factor Type 2 Receptor Expression in Cardiac Hypertrophy.

ACS Omega. 2021-6-21

[9]
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.

Genes (Basel). 2021-2-27

[10]
Amynthas corticis genome reveals molecular mechanisms behind global distribution.

Commun Biol. 2021-1-29

本文引用的文献

[1]
High-resolution chromatin dynamics during a yeast stress response.

Mol Cell. 2015-4-16

[2]
Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens.

Science. 2015-3-6

[3]
High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies.

Cell. 2014-12-18

[4]
Immunogenetics. Chromatin state dynamics during blood formation.

Science. 2014-8-7

[5]
Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation.

Bioinformatics. 2014-6-15

[6]
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.

Nature. 2014-6-11

[7]
A method to identify differential expression profiles of time-course gene data with Fourier transformation.

BMC Bioinformatics. 2013-10-18

[8]
A comparison of methods for differential expression analysis of RNA-seq data.

BMC Bioinformatics. 2013-3-9

[9]
Dynamic regulatory network controlling TH17 cell differentiation.

Nature. 2013-3-6

[10]
A validated regulatory network for Th17 cell specification.

Cell. 2012-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索