文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无分布和解析方法在单细胞差异表达中的功效和样本量计算

A distribution-free and analytic method for power and sample size calculation in single-cell differential expression.

机构信息

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States.

Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37203, United States.

出版信息

Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae540.


DOI:10.1093/bioinformatics/btae540
PMID:39231036
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11407695/
Abstract

MOTIVATION: Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies. RESULTS: We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis. AVAILABILITY AND IMPLEMENTATION: scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.

摘要

动机:单细胞转录组学中的差异表达分析揭示了细胞类型对各种处理或生物条件的特异性反应。为了确保分析的稳健性和可靠性,具有充足的统计功效和样本量的坚实实验设计至关重要。然而,现有的单细胞转录组学数据功效和样本量计算方法通常假设特定的分布,可能偏离真实数据分布。此外,它们通常忽略了个体样本内的细胞间相关性,这在准确表示生物现象方面带来了挑战。此外,由于推导解析公式的复杂性,大多数方法采用耗时的基于模拟的策略。

结果:我们提出了一种基于广义估计方程的分析方法 scPS,用于计算基于广义估计方程的功效和样本量。scPS 的突出特点是不对数据分布做出假设,并考虑个体样本内的细胞间相关性。scPS 是单细胞差异表达分析实验设计的快速而强大的方法。

可用性和实现:scPS 可在 https://github.com/cyhsuTN/scPS 和 Zenodo https://zenodo.org/records/13375996 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/39768ff0fb17/btae540f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/bfd0f49bfcd0/btae540f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/73f6d919c0cb/btae540f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/546dec9ea734/btae540f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/d2f56888b0bf/btae540f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/f1076e8a4cb6/btae540f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/7b8535f1b3fd/btae540f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/39768ff0fb17/btae540f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/bfd0f49bfcd0/btae540f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/73f6d919c0cb/btae540f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/546dec9ea734/btae540f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/d2f56888b0bf/btae540f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/f1076e8a4cb6/btae540f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/7b8535f1b3fd/btae540f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/39768ff0fb17/btae540f7.jpg

相似文献

[1]
A distribution-free and analytic method for power and sample size calculation in single-cell differential expression.

Bioinformatics. 2024-9-2

[2]
DiSC: a statistical tool for fast differential expression analysis of individual-level single-cell RNA-seq data.

Bioinformatics. 2025-6-2

[3]
Single-cell analysis comparing early-stage oocytes from fresh and slow-frozen/thawed human ovarian cortex reveals minimal impact of cryopreservation on the oocyte transcriptome.

Hum Reprod. 2025-4-1

[4]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

[5]
Sexual Harassment and Prevention Training

2025-1

[6]
Gene Spatial Integration: enhancing spatial transcriptomics analysis via deep learning and batch effect mitigation.

Bioinformatics. 2025-6-13

[7]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[8]
Perceptions and experiences of the prevention, detection, and management of postpartum haemorrhage: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2023-11-27

[9]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[10]
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

Cochrane Database Syst Rev. 2015-9-29

本文引用的文献

[1]
Computing Power and Sample Size for the False Discovery Rate in Multiple Applications.

Genes (Basel). 2024-3-7

[2]
scKWARN: Kernel-weighted-average robust normalization for single-cell RNA-seq data.

Bioinformatics. 2024-2-1

[3]
Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma.

Cell. 2024-1-4

[4]
Single-cell and spatial transcriptomics reveal changes in cell heterogeneity during progression of human tendinopathy.

BMC Biol. 2023-6-6

[5]
Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics Experiments: Review, Tutorial, and Perspectives.

Biomolecules. 2023-1-24

[6]
Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment.

Gut. 2023-5

[7]
scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies.

Nat Commun. 2021-11-16

[8]
Hierarchicell: an R-package for estimating power for tests of differential expression with single-cell data.

BMC Genomics. 2021-5-1

[9]
A practical solution to pseudoreplication bias in single-cell studies.

Nat Commun. 2021-2-2

[10]
Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia.

Nature. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索