Suppr超能文献

无分布和解析方法在单细胞差异表达中的功效和样本量计算

A distribution-free and analytic method for power and sample size calculation in single-cell differential expression.

机构信息

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States.

Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37203, United States.

出版信息

Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae540.

Abstract

MOTIVATION

Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies.

RESULTS

We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis.

AVAILABILITY AND IMPLEMENTATION

scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.

摘要

动机

单细胞转录组学中的差异表达分析揭示了细胞类型对各种处理或生物条件的特异性反应。为了确保分析的稳健性和可靠性,具有充足的统计功效和样本量的坚实实验设计至关重要。然而,现有的单细胞转录组学数据功效和样本量计算方法通常假设特定的分布,可能偏离真实数据分布。此外,它们通常忽略了个体样本内的细胞间相关性,这在准确表示生物现象方面带来了挑战。此外,由于推导解析公式的复杂性,大多数方法采用耗时的基于模拟的策略。

结果

我们提出了一种基于广义估计方程的分析方法 scPS,用于计算基于广义估计方程的功效和样本量。scPS 的突出特点是不对数据分布做出假设,并考虑个体样本内的细胞间相关性。scPS 是单细胞差异表达分析实验设计的快速而强大的方法。

可用性和实现

scPS 可在 https://github.com/cyhsuTN/scPS 和 Zenodo https://zenodo.org/records/13375996 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db40/11407695/bfd0f49bfcd0/btae540f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验