Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States.
Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37203, United States.
Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae540.
MOTIVATION: Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies. RESULTS: We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis. AVAILABILITY AND IMPLEMENTATION: scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.
动机:单细胞转录组学中的差异表达分析揭示了细胞类型对各种处理或生物条件的特异性反应。为了确保分析的稳健性和可靠性,具有充足的统计功效和样本量的坚实实验设计至关重要。然而,现有的单细胞转录组学数据功效和样本量计算方法通常假设特定的分布,可能偏离真实数据分布。此外,它们通常忽略了个体样本内的细胞间相关性,这在准确表示生物现象方面带来了挑战。此外,由于推导解析公式的复杂性,大多数方法采用耗时的基于模拟的策略。
结果:我们提出了一种基于广义估计方程的分析方法 scPS,用于计算基于广义估计方程的功效和样本量。scPS 的突出特点是不对数据分布做出假设,并考虑个体样本内的细胞间相关性。scPS 是单细胞差异表达分析实验设计的快速而强大的方法。
可用性和实现:scPS 可在 https://github.com/cyhsuTN/scPS 和 Zenodo https://zenodo.org/records/13375996 上免费获得。
Cochrane Database Syst Rev. 2020-10-19
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2023-11-27
Cochrane Database Syst Rev. 2015-9-29
Genes (Basel). 2024-3-7
Bioinformatics. 2024-2-1
Nat Commun. 2021-2-2