Suppr超能文献

利用叶片光谱特性评估干旱对植物水势的影响。

Using foliar spectral properties to assess the effects of drought on plant water potential.

机构信息

Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.

Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53705, USA.

出版信息

Tree Physiol. 2017 Nov 1;37(11):1582-1591. doi: 10.1093/treephys/tpx106.

Abstract

Drought frequency is predicted to increase in future environments. Leaf water potential (ΨLW) is commonly used to evaluate plant water status, but traditional measurements can be logistically difficult and require destructive sampling. We used reflectance spectroscopy to characterize variation in ΨLW of Quercus oleoides Schltdl. & Cham. under differential water availability and tested the ability to predict pre-dawn ΨLW (PDΨLW) using spectral data collected hours after pressure chamber measurements on dark-acclimated leaves. ΨLW was measured with a Scholander pressure chamber. Leaf reflectance was collected at one or both of two time points: immediately (ΨLW) and ~5 h after pressure chamber measurements (PDΨLW). Predictive models were constructed using partial least-squares regression. Model performance was evaluated using coefficient of determination (R2), root-mean-square error (RMSE), bias, and the percent RMSE of the data range (%RMSE). ΨLW and PDΨLW were well predicted using spectroscopic models and successfully estimated a wide variation in ΨLW (light- or dark-acclimated leaves) as well as PDΨLW (dark-acclimated leaves only). Mean ΨLWR2, RMSE and bias values were 0.65, 0.51 MPa and 0.09, respectively, with a %RMSE between 8% and 20%, while mean PDΨLWR2, RMSE and bias values were 0.60, 0.44 MPa and 0.01, respectively, with a %RMSE between 9% and 20%. Estimates of PDΨLW produced similar statistical outcomes when analyzing treatment effects on PDΨLW as those found using reference pressure chamber measurements. These findings highlight a promising approach to evaluate plant responses to environmental change by providing rapid measurements that can be used to estimate plant water status as well as demonstrating that spectroscopic measurements can be used as a surrogate for standard, reference measurements in a statistical framework.

摘要

未来环境中干旱频率预计会增加。叶片水势(ΨLW)常用于评估植物水分状况,但传统的测量方法在物流上可能很困难,并且需要破坏性采样。我们使用反射光谱法来描述不同水分条件下 Quercus oleoides Schltdl. & Cham. 的 ΨLW 变化,并测试了使用暗适应叶片压力室测量数小时后收集的光谱数据来预测黎明前 ΨLW(PDΨLW)的能力。ΨLW 使用 Scholander 压力室进行测量。在一个或两个时间点采集叶片反射率:立即(ΨLW)和压力室测量后约 5 小时(PDΨLW)。使用偏最小二乘回归构建预测模型。使用决定系数(R2)、均方根误差(RMSE)、偏差和数据范围的 RMSE 百分比(%RMSE)来评估模型性能。使用光谱模型很好地预测了 ΨLW 和 PDΨLW,并成功估计了 ΨLW 的广泛变化(光适应或暗适应叶片)以及 PDΨLW(仅暗适应叶片)。平均 ΨLWR2、RMSE 和偏差值分别为 0.65、0.51 MPa 和 0.09,%RMSE 在 8%到 20%之间,而平均 PDΨLWR2、RMSE 和偏差值分别为 0.60、0.44 MPa 和 0.01,%RMSE 在 9%到 20%之间。当分析处理对 PDΨLW 的影响时,使用参考压力室测量结果获得了类似的统计结果,从而证明了 PDΨLW 的估计值。这些发现强调了一种有前途的方法,可以通过提供快速测量来评估植物对环境变化的反应,从而估计植物的水分状况,并证明光谱测量可以在统计框架内用作标准参考测量的替代品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验