Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain.
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
Plant Cell Physiol. 2017 Dec 1;58(12):2057-2066. doi: 10.1093/pcp/pcx135.
Despite the long-established importance of salicylic acid (SA) in plant stress responses and other biological processes, its biosynthetic pathways have not been fully characterized. The proposed synthesis of SA originates from chorismate by two distinct pathways: the isochorismate and phenylalanine (Phe) ammonia-lyase (PAL) pathways. Cyanogenesis is the process related to the release of hydrogen cyanide from endogenous cyanogenic glycosides (CNglcs), and it has been linked to plant plasticity improvement. To date, however, no relationship has been suggested between the two pathways. In this work, by metabolomics and biochemical approaches (including the use of [13C]-labeled compounds), we provide strong evidences showing that CNglcs turnover is involved, at least in part, in SA biosynthesis in peach plants under control and stress conditions. The main CNglcs in peach are prunasin and amygdalin, with mandelonitrile (MD), synthesized from phenylalanine, controlling their turnover. In peach plants MD is the intermediary molecule of the suggested new SA biosynthetic pathway and CNglcs turnover, regulating the biosynthesis of both amygdalin and SA. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway). MD also provided partial protection against Plum pox virus infection in peach seedlings. Thus, we propose a third pathway, an alternative to the PAL pathway, for SA synthesis in peach plants.
尽管水杨酸(SA)在植物应激反应和其他生物过程中具有悠久的重要性,但它的生物合成途径尚未完全阐明。SA 的合成途径源于分支酸,通过两条不同的途径:异分支酸途径和苯丙氨酸(Phe)氨裂解酶(PAL)途径。氰苷(CNglcs)的内源性释放与氰化氢的释放有关,与植物可塑性的提高有关。然而,迄今为止,尚未提出这两种途径之间的关系。在这项工作中,我们通过代谢组学和生化方法(包括使用 [13C]-标记化合物),提供了强有力的证据表明,在对照和胁迫条件下,CNglcs 的周转至少部分参与了桃植株中 SA 的生物合成。桃中的主要 CNglcs 是李苷和苦杏仁苷,其周转受苯丙氨酸合成的扁桃腈(MD)控制。在桃植株中,MD 是建议的新 SA 生物合成途径和 CNglcs 周转的中间分子,调节苦杏仁苷和 SA 的生物合成。用 MD 处理的桃植株通过苯甲酸(PAL 途径中的 SA 前体之一)显示出 SA 水平升高。MD 还为桃幼苗中李痘病毒感染提供了部分保护。因此,我们提出了桃植株中 SA 合成的第三条途径,即替代 PAL 途径。