Suppr超能文献

不同分类群公民科学案例观察的空间分布。

Spatial distribution of citizen science casuistic observations for different taxonomic groups.

机构信息

CE3C, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal.

Cátedra Infraestruturas de Portugal-Biodiversidade, CIBIO/InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.

出版信息

Sci Rep. 2017 Oct 16;7(1):12832. doi: 10.1038/s41598-017-13130-8.

Abstract

Opportunistic citizen science databases are becoming an important way of gathering information on species distributions. These data are temporally and spatially dispersed and could have limitations regarding biases in the distribution of the observations in space and/or time. In this work, we test the influence of landscape variables in the distribution of citizen science observations for eight taxonomic groups. We use data collected through a Portuguese citizen science database (biodiversity4all.org). We use a zero-inflated negative binomial regression to model the distribution of observations as a function of a set of variables representing the landscape features plausibly influencing the spatial distribution of the records. Results suggest that the density of paths is the most important variable, having a statistically significant positive relationship with number of observations for seven of the eight taxa considered. Wetland coverage was also identified as having a significant, positive relationship, for birds, amphibians and reptiles, and mammals. Our results highlight that the distribution of species observations, in citizen science projects, is spatially biased. Higher frequency of observations is driven largely by accessibility and by the presence of water bodies. We conclude that efforts are required to increase the spatial evenness of sampling effort from volunteers.

摘要

机会主义公民科学数据库正成为收集物种分布信息的一种重要方式。这些数据在时间和空间上是分散的,并且可能存在观测在空间和/或时间分布上存在偏差的局限性。在这项工作中,我们测试了景观变量对八个分类群的公民科学观测分布的影响。我们使用通过葡萄牙公民科学数据库(biodiversity4all.org)收集的数据。我们使用零膨胀负二项式回归来模拟观测分布,作为一组变量的函数,这些变量代表了可能影响记录空间分布的景观特征。结果表明,路径密度是最重要的变量,对于所考虑的八个分类群中的七个,与观测数量具有统计学上显著的正相关关系。湿地覆盖率也被确定为鸟类、两栖动物和爬行动物以及哺乳动物的观测数量具有显著的正相关关系。我们的研究结果表明,公民科学项目中物种观测的分布存在空间偏差。观测频率的增加在很大程度上是由可及性和水体的存在驱动的。我们得出结论,需要努力增加志愿者采样努力的空间均匀性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c0/5643322/a0c180815424/41598_2017_13130_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验