Suppr超能文献

超越奖励预测误差:人类纹状体在学习过程中更新规则价值。

Beyond Reward Prediction Errors: Human Striatum Updates Rule Values During Learning.

机构信息

Stanford Neurosciences Graduate Training Program, Stanford University, Stanford, CA, USA.

Department of Psychology, Stanford University, Stanford, CA, USA.

出版信息

Cereb Cortex. 2018 Nov 1;28(11):3965-3975. doi: 10.1093/cercor/bhx259.

Abstract

Humans naturally group the world into coherent categories defined by membership rules. Rules can be learned implicitly by building stimulus-response associations using reinforcement learning or by using explicit reasoning. We tested if the striatum, in which activation reliably scales with reward prediction error, would track prediction errors in a task that required explicit rule generation. Using functional magnetic resonance imaging during a categorization task, we show that striatal responses to feedback scale with a "surprise" signal derived from a Bayesian rule-learning model and are inconsistent with RL prediction error. We also find that striatum and caudal inferior frontal sulcus (cIFS) are involved in updating the likelihood of discriminative rules. We conclude that the striatum, in cooperation with the cIFS, is involved in updating the values assigned to categorization rules when people learn using explicit reasoning.

摘要

人类自然地将世界划分为由成员规则定义的连贯类别。规则可以通过使用强化学习建立刺激-反应关联来隐式学习,也可以通过显式推理来学习。我们测试了纹状体是否会在需要显式规则生成的任务中跟踪预测误差,纹状体的激活与奖励预测误差可靠地成比例。在分类任务中使用功能磁共振成像,我们表明纹状体对反馈的反应与来自贝叶斯规则学习模型的“惊喜”信号成比例,并且与 RL 预测误差不一致。我们还发现纹状体和尾侧下额前回(cIFS)参与更新判别规则的可能性。我们得出结论,当人们使用显式推理进行学习时,纹状体与 cIFS 合作,参与更新分类规则所赋予的价值。

相似文献

3
Causal Inference Gates Corticostriatal Learning.因果推理门控皮质纹状体学习。
J Neurosci. 2021 Aug 11;41(32):6892-6904. doi: 10.1523/JNEUROSCI.2796-20.2021. Epub 2021 Jul 9.
8
Surprise beyond prediction error.超出预测误差的惊喜。
Hum Brain Mapp. 2014 Sep;35(9):4805-14. doi: 10.1002/hbm.22513. Epub 2014 Apr 3.
10
Policy adjustment in a dynamic economic game.动态经济博弈中的政策调整。
PLoS One. 2006 Dec 20;1(1):e103. doi: 10.1371/journal.pone.0000103.

引用本文的文献

2
A dopaminergic basis of behavioral control.行为控制的多巴胺能基础。
bioRxiv. 2024 Oct 2:2024.09.17.613524. doi: 10.1101/2024.09.17.613524.
4
Category learning in a recurrent neural network with reinforcement learning.基于强化学习的循环神经网络中的类别学习。
Front Psychiatry. 2022 Oct 25;13:1008011. doi: 10.3389/fpsyt.2022.1008011. eCollection 2022.
7
The Role of Executive Function in Shaping Reinforcement Learning.执行功能在塑造强化学习中的作用。
Curr Opin Behav Sci. 2021 Apr;38:66-73. doi: 10.1016/j.cobeha.2020.10.003. Epub 2020 Nov 14.
8
Advances in modeling learning and decision-making in neuroscience.神经科学中学习和决策建模的进展。
Neuropsychopharmacology. 2022 Jan;47(1):104-118. doi: 10.1038/s41386-021-01126-y. Epub 2021 Aug 27.
9
Multitask learning over shared subspaces.多任务学习的共享子空间。
PLoS Comput Biol. 2021 Jul 6;17(7):e1009092. doi: 10.1371/journal.pcbi.1009092. eCollection 2021 Jul.
10
Confirmation of interpersonal expectations is intrinsically rewarding.人际期望的确认具有内在的奖励性。
Soc Cogn Affect Neurosci. 2021 Dec 30;16(12):1276-1287. doi: 10.1093/scan/nsab081.

本文引用的文献

1
3
Mesolimbic dopamine signals the value of work.中脑边缘多巴胺传递工作的价值。
Nat Neurosci. 2016 Jan;19(1):117-26. doi: 10.1038/nn.4173. Epub 2015 Nov 23.
7
Reversal learning and dopamine: a bayesian perspective.逆向学习与多巴胺:贝叶斯视角
J Neurosci. 2015 Feb 11;35(6):2407-16. doi: 10.1523/JNEUROSCI.1989-14.2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验