Suppr超能文献

成纤维细胞生长因子受体 3(FGFR3)的组成性激活会破坏各种软骨发育不全模型中的初级纤毛长度和IFT20 转运。

Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia.

机构信息

INSERM U1163, Institut Imagine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

Cell Imaging Platform, INSERM US24, Structure Fédérative de Recherche Necker, Paris, France.

出版信息

Hum Mol Genet. 2018 Jan 1;27(1):1-13. doi: 10.1093/hmg/ddx374.

Abstract

Fibroblast growth factor receptor 3 (FGFR3) gain-of-function mutations cause dwarfisms, including achondroplasia (ACH) and thanatophoric dysplasia (TD). The constitutive activation of FGFR3 disrupts the normal process of skeletal growth. Bone-growth anomalies have been identified in skeletal ciliopathies, in which primary cilia (PC) function is disrupted. In human ACH and TD, the impact of FGFR3 mutations on PC in growth plate cartilage remains unknown. Here we showed that in chondrocytes from human (ACH, TD) and mouse Fgfr3Y367C/+ cartilage, the constitutively active FGFR3 perturbed PC length and the sorting and trafficking of intraflagellar transport (IFT) 20 to the PC. We demonstrated that inhibiting FGFR3 with FGFR inhibitor, PD173074, rescued both PC length and IFT20 trafficking. We also studied the impact of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) pathway. Interestingly, mTOR inhibition also rescued PC length and IFT20 trafficking. Together, we provide evidence that the growth plate defects ascribed to FGFR3-related dwarfisms are potentially due to loss of PC function, and these dwarfisms may represent a novel type of skeletal disorders with defective ciliogenesis.

摘要

成纤维细胞生长因子受体 3(FGFR3)功能获得性突变导致侏儒症,包括软骨发育不全(ACH)和致死性发育不良(TD)。FGFR3 的组成性激活破坏了骨骼生长的正常过程。在骨骼纤毛病变中已经鉴定出骨骼生长异常,其中初级纤毛(PC)功能被破坏。在人类 ACH 和 TD 中,FGFR3 突变对生长板软骨中 PC 的影响尚不清楚。在这里,我们表明在来自人类(ACH、TD)和小鼠 Fgfr3Y367C/+软骨的软骨细胞中,组成性激活的 FGFR3 扰乱了 PC 的长度以及内纤毛运输(IFT)20 向 PC 的分拣和运输。我们证明,用 FGFR 抑制剂 PD173074 抑制 FGFR3 可挽救 PC 的长度和 IFT20 的运输。我们还研究了雷帕霉素(mTOR 通路抑制剂)的影响。有趣的是,mTOR 抑制也挽救了 PC 的长度和 IFT20 的运输。总之,我们提供的证据表明,归因于 FGFR3 相关侏儒症的生长板缺陷可能是由于 PC 功能丧失引起的,这些侏儒症可能代表一种新型的骨骼疾病,其纤毛发生缺陷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验