Suppr超能文献

突触连接的最佳程度

Optimal Degrees of Synaptic Connectivity.

作者信息

Litwin-Kumar Ashok, Harris Kameron Decker, Axel Richard, Sompolinsky Haim, Abbott L F

机构信息

Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.

出版信息

Neuron. 2017 Mar 8;93(5):1153-1164.e7. doi: 10.1016/j.neuron.2017.01.030. Epub 2017 Feb 16.

Abstract

Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits, including the insect mushroom body, also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs each neuron receives and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density.

摘要

突触连接在不同类型的神经元中差异很大。小脑颗粒细胞接收的输入比它们所支配的浦肯野细胞少五个数量级,并且包括昆虫蘑菇体在内的类小脑回路在连接性上也表现出很大差异。相比之下,大脑皮层中每个神经元的输入数量更加均匀且众多。我们研究了由一群神经元形成的表征维度如何取决于每个神经元接收的输入数量,以及这对学习关联意味着什么。我们的理论预测,小脑颗粒细胞和果蝇肯扬细胞表征的维度在与解剖学观察到的突触连接程度相匹配时达到最大化, 这表明稀疏连接有时优于密集连接。然而,当输入突触受到监督可塑性的影响时,密集布线变得有利,这表明一组突触所表现出的可塑性类型是连接密度的主要决定因素。

相似文献

1
Optimal Degrees of Synaptic Connectivity.突触连接的最佳程度
Neuron. 2017 Mar 8;93(5):1153-1164.e7. doi: 10.1016/j.neuron.2017.01.030. Epub 2017 Feb 16.
4
The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex.钙在小脑皮层突触可塑性和运动学习中的作用。
Neurosci Biobehav Rev. 2012 Apr;36(4):1153-62. doi: 10.1016/j.neubiorev.2012.01.005. Epub 2012 Jan 28.
5
Synaptic mechanisms of sensorimotor learning in the cerebellum.小脑感觉运动学习的突触机制。
Curr Opin Neurobiol. 2011 Aug;21(4):609-15. doi: 10.1016/j.conb.2011.06.011. Epub 2011 Jul 20.
8
Optimal properties of analog perceptrons with excitatory weights.具有兴奋性权重的模拟感知器的最佳特性。
PLoS Comput Biol. 2013;9(2):e1002919. doi: 10.1371/journal.pcbi.1002919. Epub 2013 Feb 21.
9
Flexible neural connectivity under constraints on total connection strength.在总连接强度约束下的灵活神经连接。
PLoS Comput Biol. 2020 Aug 3;16(8):e1008080. doi: 10.1371/journal.pcbi.1008080. eCollection 2020 Aug.

引用本文的文献

1
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
PLoS Comput Biol. 2025 Aug 18;21(8):e1013371. doi: 10.1371/journal.pcbi.1013371.
4
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
bioRxiv. 2025 Jul 11:2025.04.22.649933. doi: 10.1101/2025.04.22.649933.
10
Nonlinear high-activity neuronal excitation enhances odor discrimination.非线性高活性神经元兴奋增强气味辨别能力。
Curr Biol. 2025 Apr 7;35(7):1521-1538.e5. doi: 10.1016/j.cub.2025.02.034. Epub 2025 Mar 18.

本文引用的文献

1
Is cortical connectivity optimized for storing information?皮层连接是否优化用于存储信息?
Nat Neurosci. 2016 May;19(5):749-755. doi: 10.1038/nn.4286. Epub 2016 Apr 11.
7
Questioning the role of sparse coding in the brain.质疑稀疏编码在大脑中的作用。
Trends Neurosci. 2015 Jul;38(7):417-27. doi: 10.1016/j.tins.2015.05.005. Epub 2015 Jun 17.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
Sparseness and expansion in sensory representations.感觉表象的稀疏化和扩展。
Neuron. 2014 Sep 3;83(5):1213-26. doi: 10.1016/j.neuron.2014.07.035. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验