Suppr超能文献

基于扩散加权 MRI 直方图特征的支持向量机在乳腺癌分类中的应用:初步研究。

Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study.

机构信息

Department of Physics, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.

Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway.

出版信息

J Magn Reson Imaging. 2018 May;47(5):1205-1216. doi: 10.1002/jmri.25873. Epub 2017 Oct 16.

Abstract

BACKGROUND

Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improved by machine learning.

PURPOSE

To evaluate classification of malignant and benign tumors and breast cancer subtypes using support vector machine (SVM).

STUDY TYPE

Prospective.

SUBJECTS

Fifty-one patients with benign (n = 23) and malignant (n = 28) breast tumors (26 ER+, whereof six were HER2+).

FIELD STRENGTH/SEQUENCE: Patients were imaged with DW-MRI (3T) using twice refocused spin-echo echo-planar imaging with echo time / repetition time (TR/TE) = 9000/86 msec, 90 × 90 matrix size, 2 × 2 mm in-plane resolution, 2.5 mm slice thickness, and 13 b-values.

ASSESSMENT

Apparent diffusion coefficient (ADC), relative enhanced diffusivity (RED), and the intravoxel incoherent motion (IVIM) parameters diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The histogram properties (median, mean, standard deviation, skewness, kurtosis) were used as features in SVM (10-fold cross-validation) for differentiation of lesions and subtyping.

STATISTICAL TESTS

Accuracies of the SVM classifications were calculated to find the combination of features with highest prediction accuracy. Mann-Whitney tests were performed for univariate comparisons.

RESULTS

For benign versus malignant tumors, univariate analysis found 11 histogram properties to be significant differentiators. Using SVM, the highest accuracy (0.96) was achieved from a single feature (mean of RED), or from three feature combinations of IVIM or ADC. Combining features from all models gave perfect classification. No single feature predicted HER2 status of ER + tumors (univariate or SVM), although high accuracy (0.90) was achieved with SVM combining several features. Importantly, these features had to include higher-order statistics (kurtosis and skewness), indicating the importance to account for heterogeneity.

DATA CONCLUSION

Our findings suggest that SVM, using features from a combination of diffusion models, improves prediction accuracy for differentiation of benign versus malignant breast tumors, and may further assist in subtyping of breast cancer.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1205-1216.

摘要

背景

扩散加权磁共振成像(DWI)目前是肿瘤学中发展最快的 MRI 技术之一。DWI 模型拟合的直方图特性是区分病变的有用特征,通过机器学习可以提高分类的准确性。

目的

使用支持向量机(SVM)评估恶性和良性肿瘤以及乳腺癌亚型的分类。

研究类型

前瞻性。

受试者

51 例良性(n=23)和恶性(n=28)乳腺肿瘤患者(26 例雌激素受体阳性,其中 6 例人表皮生长因子受体 2 阳性)。

磁场强度/序列:使用两次重聚焦自旋回波回波平面成像对患者进行 DW-MRI(3T)扫描,回波时间/重复时间(TR/TE)=9000/86ms,90×90 矩阵大小,2×2mm 层厚,13 个 b 值。

评估

计算表观扩散系数(ADC)、相对增强扩散系数(RED)和体素内不相干运动(IVIM)参数扩散系数(D)、假性扩散系数(D*)和灌注分数(f)。直方图特性(中位数、平均值、标准差、偏度、峰度)作为 SVM(10 折交叉验证)的特征,用于区分病变和亚型。

统计检验

计算 SVM 分类的准确性,以找到具有最高预测准确性的特征组合。进行了单变量 Mann-Whitney 检验。

结果

对于良性与恶性肿瘤,单变量分析发现 11 个直方图特性是显著的区分因素。使用 SVM,单个特征(RED 的平均值)或 IVIM 或 ADC 的三个特征组合具有最高的准确性(0.96)。结合所有模型的特征可实现完全分类。没有单个特征可以预测雌激素受体阳性肿瘤的 HER2 状态(单变量或 SVM),尽管 SVM 结合多个特征可以达到 0.90 的高精度。重要的是,这些特征必须包括高阶统计量(峰度和偏度),这表明需要考虑异质性。

数据结论

我们的研究结果表明,SVM 使用扩散模型组合的特征可提高良性与恶性乳腺肿瘤区分的预测准确性,并可能进一步辅助乳腺癌的亚型分类。

证据水平

3 技术功效:3 级 J. Magn. Reson. Imaging 2018;47:1205-1216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验