State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Yantai Institute of Coast Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
Nature. 2017 Nov 2;551(7678):57-63. doi: 10.1038/nature24278. Epub 2017 Oct 18.
Life on Earth depends on photosynthesis for its conversion of solar energy to chemical energy. Photosynthetic organisms have developed a variety of light-harvesting systems to capture sunlight. The largest light-harvesting complex is the phycobilisome (PBS), the main light-harvesting antenna in cyanobacteria and red algae. It is composed of phycobiliproteins and linker proteins but the assembly mechanisms and energy transfer pathways of the PBS are not well understood. Here we report the structure of a 16.8-megadalton PBS from a red alga at 3.5 Å resolution obtained by single-particle cryo-electron microscopy. We modelled 862 protein subunits, including 4 linkers in the core, 16 rod-core linkers and 52 rod linkers, and located a total of 2,048 chromophores. This structure reveals the mechanisms underlying specific interactions between linkers and phycobiliproteins, and the formation of linker skeletons. These results provide a firm structural basis for our understanding of complex assembly and the mechanisms of energy transfer within the PBS.
地球上的生命依赖光合作用将太阳能转化为化学能。光合生物已经发展出多种光捕获系统来捕获阳光。最大的光捕获复合物是藻胆体(PBS),它是蓝藻和红藻中的主要光捕获天线。它由藻胆蛋白和连接蛋白组成,但 PBS 的组装机制和能量转移途径尚不清楚。在这里,我们通过单颗粒冷冻电子显微镜获得了分辨率为 3.5Å 的红藻 16.8 兆道尔顿 PBS 的结构。我们构建了 862 个蛋白亚基模型,包括核心中的 4 个连接蛋白、16 个棒芯连接蛋白和 52 个棒连接蛋白,并定位了总共 2048 个发色团。该结构揭示了连接蛋白和藻胆蛋白之间特定相互作用以及连接蛋白骨架形成的机制。这些结果为我们理解 PBS 内的复杂组装和能量转移机制提供了坚实的结构基础。