Tran-Ba Khanh-Hoa, Lee Daniel J, Zhu Jieling, Paeng Keewook, Kaufman Laura J
Department of Chemistry, Columbia University, New York, New York.
Department of Chemistry, Columbia University, New York, New York.
Biophys J. 2017 Oct 17;113(8):1882-1892. doi: 10.1016/j.bpj.2017.08.025.
Fibrillar type I collagen-based hydrogels are commonly used in tissue engineering and as matrices for biophysical studies. Mechanical and structural properties of these gels are known to be governed by the conditions under which fibrillogenesis occurs, exhibiting variation as a function of protein concentration, temperature, pH, and ionic strength. Deeper understanding of how macroscopic structure affects viscoelastic properties of collagen gels over the course of fibrillogenesis provides fundamental insight into biopolymer gel properties and promises enhanced control over the properties of such gels. Here, we investigate type I collagen fibrillogenesis using confocal rheology-simultaneous confocal reflectance microscopy, confocal fluorescence microscopy, and rheology. The multimodal approach allows direct comparison of how viscoelastic properties track the structural evolution of the gel on fiber and network length scales. Quantitative assessment and comparison of each imaging modality and the simultaneously collected rheological measurements show that the presence of a system-spanning structure occurs at a time similar to rheological determinants of gelation. Although this and some rheological measures are consistent with critical gelation through percolation, additional rheological and structural properties of the gel are found to be inconsistent with this theory. This study clarifies how structure sets viscoelasticity during collagen fibrillogenesis and more broadly highlights the utility of multimodal measurements as critical test-beds for theoretical descriptions of complex systems.
基于I型胶原纤维的水凝胶常用于组织工程,并作为生物物理研究的基质。已知这些凝胶的机械和结构特性受原纤维形成条件的支配,其表现会随蛋白质浓度、温度、pH值和离子强度而变化。深入了解在原纤维形成过程中宏观结构如何影响胶原凝胶的粘弹性,可为生物聚合物凝胶特性提供基本见解,并有望增强对此类凝胶特性的控制。在此,我们使用共聚焦流变学——同时结合共聚焦反射显微镜、共聚焦荧光显微镜和流变学来研究I型胶原的原纤维形成。这种多模态方法能够直接比较粘弹性特性在纤维和网络长度尺度上如何跟踪凝胶的结构演变。对每种成像模态以及同时收集的流变学测量结果进行定量评估和比较表明,跨越整个系统的结构出现的时间与凝胶化的流变学决定因素相似。尽管这一点以及一些流变学测量结果与通过渗滤实现的临界凝胶化一致,但发现凝胶的其他流变学和结构特性与该理论不一致。这项研究阐明了在胶原原纤维形成过程中结构如何设定粘弹性,更广泛地突出了多模态测量作为复杂系统理论描述关键试验台的效用。