Suppr超能文献

初级运动皮层、网状结构和脊髓对分级肌肉激活的不同贡献。

Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.

作者信息

Zaaimi Boubker, Dean Lauren R, Baker Stuart N

机构信息

Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , United Kingdom.

出版信息

J Neurophysiol. 2018 Jan 1;119(1):235-250. doi: 10.1152/jn.00672.2017. Epub 2017 Oct 18.

Abstract

Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more efficient but less precise in producing natural patterns of motor output than motor cortex or spinal cord. We suggest that gross muscle synergies from the reticular formation are sculpted and refined by motor cortex and spinal circuits to reach the finely fractionated output characteristic of dexterous primate upper limb movements.

摘要

协调运动需要肌肉有规律地激活。在本研究中,我们研究了皮层和皮层下区域对灵长类动物上肢肌肉选择性激活的差异。训练五只猕猴执行伸手抓握任务,当通过插入运动皮层(M1)、网状结构(RF)或颈脊髓(SC)的微电极施加微弱的单脉冲刺激时,记录10至24块肌肉的肌电图(EMG)。将刺激强度调整到略高于阈值的水平。根据整流后的EMG平均值评估刺激诱发的效应。M1、RF和SC每个部位激活的肌肉数量分别为1.5±0.9、1.9±0.8和2.5±1.6块(平均值±标准差);只有M1和SC有显著差异。在记录时段之间,使用微型数据记录器记录猕猴在笼中的自然肌肉活动。一种新的分析方法评估了刺激诱发反应能够多好地重建自然活动。这提供了两个指标:归一化向量长度L,反映自然活动和刺激诱发活动的对齐程度;归一化残差R,测量无法用刺激诱发模式达到的自然活动比例。M1、RF和SC的平均值分别为L = 119.1±9.6%、105.9±6.2%和109.3±8.4%,R = 50.3±4.9%、56.4±3.5%和51.5±4.8%。在这两项测量中,RF与M1和SC均有显著差异。因此,RF能够以比M1和SC所需的激活更少的量产生接近运动输出的结果,但M1和SC在达到所需的精确激活模式方面更精确。皮层、脑干和脊髓中枢可能发挥不同的作用,因为它们协同产生自主运动。新内容与值得注意之处:脑干网状结构、初级运动皮层和颈脊髓中间带都能激活灵长类动物的上肢肌肉。然而,与运动皮层或脊髓相比,脑干输出在产生自然运动输出模式时效率更高但精度更低。我们认为,来自网状结构的总体肌肉协同作用由运动皮层和脊髓回路进行塑造和细化,以达到灵长类动物上肢灵巧运动特有的精细分级输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6ba/5866475/e8e01d2ca138/z9k0011844370001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验