Suppr超能文献

细胞向视网膜下蜂窝状假体中迁移,以实现高分辨率假体视力。

Cellular migration into a subretinal honeycomb-shaped prosthesis for high-resolution prosthetic vision.

机构信息

Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305.

Department of Ophthalmology, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2307380120. doi: 10.1073/pnas.2307380120. Epub 2023 Oct 13.

Abstract

In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 μm and reaches the 27 μm limit of natural resolution in rats with 20 μm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.

摘要

在因地理萎缩而失明的患者中,具有 100 µm 像素的视网膜下光伏植入物提供的视力与像素间距非常匹配。然而,这样的扁平双极像素无法缩小到 75 µm 以下,限制了可达到的视力。通过使用三维(3-D)电极来塑造电场可以克服这一限制。特别是,将返回电极升高到围绕每个像素的蜂窝状垂直壁的顶部,可以使电场垂直延伸,并将其穿透组织的深度与像素宽度分离。这种方法依赖于视网膜细胞迁移到蜂窝状井中。在这里,我们证明大多数内视网膜神经元迁移到 25 µm 深的井中,将第三级神经元(如无长突细胞和节细胞)留在外面。这使得可以选择性地刺激井内的二级神经元,从而保留假体视觉中的视网膜内信号处理。与扁平植入物相比,相似的神经胶质反应表明,壁对视网膜细胞的迁移和分离不会引起额外的压力。此外,视网膜向蜂窝的迁移不会对其电兴奋性产生负面影响,而光栅视力与像素间距匹配,低至 40 µm,并且在具有 20 µm 像素的大鼠中达到 27 µm 的自然分辨率限制。这些发现为具有细胞尺寸像素的 3-D 视网膜下假体铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a780/10589669/cb5ba1523c04/pnas.2307380120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验