Suppr超能文献

对N4、N5、N6和N8神经氨酸酶亚型禽流感病毒中的神经氨酸酶抑制剂耐药性标志物进行筛查。

Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes.

作者信息

Choi Won-Suk, Jeong Ju Hwan, Kwon Jin Jung, Ahn Su Jeong, Lloren Khristine Kaith S, Kwon Hyeok-Il, Chae Hee Bok, Hwang Jungwon, Kim Myung Hee, Kim Chul-Joong, Webby Richard J, Govorkova Elena A, Choi Young Ki, Baek Yun Hee, Song Min-Suk

机构信息

College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea.

Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.

出版信息

J Virol. 2017 Dec 14;92(1). doi: 10.1128/JVI.01580-17. Print 2018 Jan 1.

Abstract

Several subtypes of avian influenza viruses (AIVs) are emerging as novel human pathogens, and the frequency of related infections has increased in recent years. Although neuraminidase (NA) inhibitors (NAIs) are the only class of antiviral drugs available for therapeutic intervention for AIV-infected patients, studies on NAI resistance among AIVs have been limited, and markers of resistance are poorly understood. Previously, we identified unique NAI resistance substitutions in AIVs of the N3, N7, and N9 NA subtypes. Here, we report profiles of NA substitutions that confer NAI resistance in AIVs of the N4, N5, N6, and N8 NA subtypes using gene-fragmented random mutagenesis. We generated libraries of mutant influenza viruses using reverse genetics (RG) and selected resistant variants in the presence of the NAIs oseltamivir carboxylate and zanamivir in MDCK cells. In addition, two substitutions, H274Y and R292K (N2 numbering), were introduced into each NA gene for comparison. We identified 37 amino acid substitutions within the NA gene, 16 of which (4 in N4, 4 in N5, 4 in N6, and 4 in N8) conferred resistance to NAIs (oseltamivir carboxylate, zanamivir, or peramivir) as determined using a fluorescence-based NA inhibition assay. Substitutions conferring NAI resistance were mainly categorized as either novel NA subtype specific (G/N147V/I, A246V, and I427L) or previously reported in other subtypes (E119A/D/V, Q136K, E276D, R292K, and R371K). Our results demonstrate that each NA subtype possesses unique NAI resistance markers, and knowledge of these substitutions in AIVs is important in facilitating antiviral susceptibility monitoring of NAI resistance in AIVs. The frequency of human infections with avian influenza viruses (AIVs) has increased in recent years. Despite the availability of vaccines, neuraminidase inhibitors (NAIs), as the only available class of drugs for AIVs in humans, have been constantly used for treatment, leading to the inevitable emergence of drug-resistant variants. To screen for substitutions conferring NAI resistance in AIVs of N4, N5, N6, and N8 NA subtypes, random mutations within the target gene were generated, and resistant viruses were selected from mutant libraries in the presence of individual drugs. We identified 16 NA substitutions conferring NAI resistance in the tested AIV subtypes; some are novel and subtype specific, and others have been previously reported in other subtypes. Our findings will contribute to an increased and more comprehensive understanding of the mechanisms of NAI-induced inhibition of influenza virus and help lead to the development of drugs that bind to alternative interaction motifs.

摘要

几种禽流感病毒(AIV)亚型正成为新型人类病原体,且近年来相关感染的频率有所增加。尽管神经氨酸酶(NA)抑制剂(NAIs)是可用于对AIV感染患者进行治疗干预的唯一一类抗病毒药物,但关于AIV中NAI耐药性的研究有限,且耐药标志物尚不清楚。此前,我们在N3、N7和N9 NA亚型的AIV中鉴定出独特的NAI耐药性替代。在此,我们使用基因片段随机诱变报告了在N4、N5、N6和N8 NA亚型的AIV中赋予NAI耐药性的NA替代谱。我们使用反向遗传学(RG)生成了突变流感病毒文库,并在MDCK细胞中在NAIs奥司他韦羧酸盐和扎那米韦存在的情况下选择耐药变体。此外,将两个替代H274Y和R292K(N2编号)引入每个NA基因进行比较。我们在NA基因中鉴定出37个氨基酸替代,其中16个(N4中有4个、N5中有4个、N6中有4个、N8中有4个)通过基于荧光的NA抑制试验确定对NAIs(奥司他韦羧酸盐、扎那米韦或帕拉米韦)具有耐药性。赋予NAI耐药性的替代主要分为新型NA亚型特异性(G/N147V/I、A246V和I427L)或先前在其他亚型中报道过的(E119A/D/V、Q136K、E276D、R292K和R371K)。我们的结果表明,每个NA亚型都具有独特的NAI耐药标志物,了解AIV中的这些替代对于促进对AIV中NAI耐药性的抗病毒敏感性监测很重要。近年来,人类感染禽流感病毒(AIV)的频率有所增加。尽管有疫苗可用,但神经氨酸酶抑制剂(NAIs)作为人类AIV的唯一可用药物类别,一直在持续用于治疗,导致不可避免地出现耐药变体。为了筛选在N4、N5、N6和N8 NA亚型的AIV中赋予NAI耐药性的替代,在靶基因内产生随机突变,并在个别药物存在的情况下从突变文库中选择耐药病毒。我们在测试的AIV亚型中鉴定出16个赋予NAI耐药性的NA替代;有些是新型且亚型特异性 的,其他一些先前已在其他亚型中报道过。我们的发现将有助于增加并更全面地了解NAI诱导的流感病毒抑制机制,并有助于开发与替代相互作用基序结合的药物。

相似文献

2
Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses.
J Virol. 2015 Nov;89(21):10891-900. doi: 10.1128/JVI.01514-15. Epub 2015 Aug 19.
10
Host cell selection of influenza neuraminidase variants: implications for drug resistance monitoring in A(H1N1) viruses.
Antiviral Res. 2010 Feb;85(2):381-8. doi: 10.1016/j.antiviral.2009.11.005. Epub 2009 Nov 13.

引用本文的文献

1
Discovering Influenza Virus Neuraminidase Inhibitors via Computational and Experimental Studies.
ACS Omega. 2024 Nov 25;9(49):48505-48511. doi: 10.1021/acsomega.4c07194. eCollection 2024 Dec 10.
2
Genetic features of avian influenza (A/H5N8) clade 2.3.4.4b isolated from quail in Egypt.
Virus Res. 2024 Dec;350:199482. doi: 10.1016/j.virusres.2024.199482. Epub 2024 Oct 17.
4
MedChemExpress compounds prevent neuraminidase N1 physics- and knowledge-based methods.
RSC Adv. 2024 Jun 12;14(27):18950-18956. doi: 10.1039/d4ra02661f.
8
Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress.
Acta Pharm Sin B. 2023 Jan;13(1):174-191. doi: 10.1016/j.apsb.2022.07.001. Epub 2022 Jul 6.
9
Monoclonal antibodies targeting the influenza virus N6 neuraminidase.
Front Immunol. 2022 Jul 27;13:944907. doi: 10.3389/fimmu.2022.944907. eCollection 2022.
10
TRAF3 Positively Regulates Host Innate Immune Resistance to Influenza A Virus Infection.
Front Cell Infect Microbiol. 2022 Apr 27;12:839625. doi: 10.3389/fcimb.2022.839625. eCollection 2022.

本文引用的文献

1
Genesis of Influenza A(H5N8) Viruses.
Emerg Infect Dis. 2017 Aug;23(8):1368-1371. doi: 10.3201/eid2308.170143. Epub 2017 Aug 15.
2
Human infections with novel reassortant H5N6 avian influenza viruses in China.
Emerg Microbes Infect. 2017 Jun 7;6(6):e50. doi: 10.1038/emi.2017.38.
4
Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China.
J Virol. 2017 May 26;91(12). doi: 10.1128/JVI.00143-17. Print 2017 Jun 15.
5
Molecular Basis for Differential Patterns of Drug Resistance in Influenza N1 and N2 Neuraminidase.
J Chem Theory Comput. 2016 Dec 13;12(12):6098-6108. doi: 10.1021/acs.jctc.6b00703. Epub 2016 Nov 17.
6
Platform for determining the inhibition profile of neuraminidase inhibitors in an influenza virus N1 background.
J Virol Methods. 2016 Nov;237:192-199. doi: 10.1016/j.jviromet.2016.09.014. Epub 2016 Sep 19.
9
Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses.
J Virol. 2015 Nov;89(21):10891-900. doi: 10.1128/JVI.01514-15. Epub 2015 Aug 19.
10
Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.
Emerg Microbes Infect. 2014 Oct;3(10):e75. doi: 10.1038/emi.2014.75. Epub 2014 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验