Suppr超能文献

张量上的多路图信号处理:不规则几何形状的综合分析。

Multiway Graph Signal Processing on Tensors: Integrative analysis of irregular geometries.

作者信息

Stanley Jay S, Chi Eric C, Mishne Gal

机构信息

Dept. of Mathematics, Yale University, New Haven.

Dept. of Statistics, NC State University, Raleigh, NC.

出版信息

IEEE Signal Process Mag. 2020 Nov;37(6):160-173. doi: 10.1109/MSP.2020.3013555. Epub 2020 Oct 29.

Abstract

Graph signal processing (GSP) is an important methodology for studying data residing on irregular structures. As acquired data is increasingly taking the form of multi-way tensors, new signal processing tools are needed to maximally utilize the multi-way structure within the data. In this paper, we review modern signal processing frameworks generalizing GSP to multi-way data, starting from graph signals coupled to familiar regular axes such as time in sensor networks, and then extending to general graphs across all tensor modes. This widely applicable paradigm motivates reformulating and improving upon classical problems and approaches to creatively address the challenges in tensor-based data. We synthesize common themes arising from current efforts to combine GSP with tensor analysis and highlight future directions in extending GSP to the multi-way paradigm.

摘要

图信号处理(GSP)是研究存在于不规则结构上的数据的一种重要方法。由于获取的数据越来越多地采用多路张量的形式,因此需要新的信号处理工具来最大程度地利用数据中的多路结构。在本文中,我们回顾了将GSP推广到多路数据的现代信号处理框架,从与诸如传感器网络中的时间等常见规则轴耦合的图信号开始,然后扩展到所有张量模式上的通用图。这种广泛适用的范式促使我们重新制定和改进经典问题及方法,以创造性地应对基于张量的数据中的挑战。我们总结了当前将GSP与张量分析相结合的努力中出现的共同主题,并突出了将GSP扩展到多路范式的未来方向。

相似文献

5
Multiway sparse distance weighted discrimination.多路稀疏距离加权判别
J Comput Graph Stat. 2023;32(2):730-743. doi: 10.1080/10618600.2022.2099404. Epub 2022 Aug 30.
9
Bayesian Nonparametric Models for Multiway Data Analysis.贝叶斯非参数模型在多向数据分析中的应用。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):475-87. doi: 10.1109/TPAMI.2013.201.

引用本文的文献

1
Graph Laplacian Learning with Exponential Family Noise.具有指数族噪声的图拉普拉斯学习
IEEE Trans Signal Inf Process Netw. 2025;11:641-654. doi: 10.1109/tsipn.2025.3572698. Epub 2025 May 26.
3
Smooth graph learning for functional connectivity estimation.平滑图学习用于功能连接估计。
Neuroimage. 2021 Oct 1;239:118289. doi: 10.1016/j.neuroimage.2021.118289. Epub 2021 Jun 23.

本文引用的文献

2
Stationary time-vertex signal processing.静态时间顶点信号处理
EURASIP J Adv Signal Process. 2019;2019(1):36. doi: 10.1186/s13634-019-0631-7. Epub 2019 Aug 20.
3
Data-Driven Tree Transforms and Metrics.数据驱动的树变换与度量
IEEE Trans Signal Inf Process Netw. 2018 Sep;4(3):451-466. doi: 10.1109/TSIPN.2017.2743561. Epub 2017 Aug 23.
5
Convex biclustering.凸双聚类
Biometrics. 2017 Mar;73(1):10-19. doi: 10.1111/biom.12540. Epub 2016 May 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验