Stanley Jay S, Chi Eric C, Mishne Gal
Dept. of Mathematics, Yale University, New Haven.
Dept. of Statistics, NC State University, Raleigh, NC.
IEEE Signal Process Mag. 2020 Nov;37(6):160-173. doi: 10.1109/MSP.2020.3013555. Epub 2020 Oct 29.
Graph signal processing (GSP) is an important methodology for studying data residing on irregular structures. As acquired data is increasingly taking the form of multi-way tensors, new signal processing tools are needed to maximally utilize the multi-way structure within the data. In this paper, we review modern signal processing frameworks generalizing GSP to multi-way data, starting from graph signals coupled to familiar regular axes such as time in sensor networks, and then extending to general graphs across all tensor modes. This widely applicable paradigm motivates reformulating and improving upon classical problems and approaches to creatively address the challenges in tensor-based data. We synthesize common themes arising from current efforts to combine GSP with tensor analysis and highlight future directions in extending GSP to the multi-way paradigm.
图信号处理(GSP)是研究存在于不规则结构上的数据的一种重要方法。由于获取的数据越来越多地采用多路张量的形式,因此需要新的信号处理工具来最大程度地利用数据中的多路结构。在本文中,我们回顾了将GSP推广到多路数据的现代信号处理框架,从与诸如传感器网络中的时间等常见规则轴耦合的图信号开始,然后扩展到所有张量模式上的通用图。这种广泛适用的范式促使我们重新制定和改进经典问题及方法,以创造性地应对基于张量的数据中的挑战。我们总结了当前将GSP与张量分析相结合的努力中出现的共同主题,并突出了将GSP扩展到多路范式的未来方向。