a Faculty of Pharmacy, The University of Sydney , Sydney NSW , Australia.
b School of Life and Environmental Sciences, The University of Sydney , Sydney NSW , Australia.
Hum Vaccin Immunother. 2018 Mar 4;14(3):508-517. doi: 10.1080/21645515.2017.1377871. Epub 2017 Nov 17.
The study of influenza virus evolution in humans has revealed a significant role of glycosylation profile alterations in the viral glycoproteins - hemagglutinin (HA) and neuraminidase (NA), in the emergence of both seasonal and pandemic strains. Viral antigenic drift can modify the number and location of glycosylation sites, altering a wide range of biological activities and the antigenic properties of the strain. In view of the key role of glycans in determining antigenicity, elucidating the glycosylation profiles of influenza strains is a requirement towards the development of improved vaccines. Sequence-based analysis of viral RNA has provided great insight into the role of glycosite modifications in altering virulence and pathogenicity. Nonetheless, this sequence-based approach can only predict potential glycosylation sites. Due to experimental challenges, experimental confirmation of the occupation of predicted glycosylation sites has only been carried out for a few strains. Herein, we utilized HCD/CID-MS/MS tandem mass spectrometry to characterize the site-specific profile of HA of an egg-grown H1N1 reference strain (A/New Caledonia/20/1999). We confirmed experimentally the occupancy of glycosylation sites identified by primary sequence analysis and determined the heterogeneity of glycan structures. Four glycosylation sequons on the stalk region (N28, N40, N304 and N498) and four on the globular head (N71, N104, N142 and N177) of the protein are occupied. Our results revealed a broad glycan microheterogeneity, i.e., a great diversity of glycan compositions present on each glycosite. The present methodology can be applied to characterize other viruses, particularly different influenza strains, to better understand the impact of glycosylation on biological activities and aid the improvement of influenza vaccines.
人类流感病毒进化的研究揭示了糖基化谱改变在病毒糖蛋白——血凝素(HA)和神经氨酸酶(NA)中的重要作用,这与季节性和大流行株的出现有关。病毒抗原漂移可以改变糖基化位点的数量和位置,从而改变该毒株的广泛的生物活性和抗原特性。鉴于聚糖在决定抗原性方面的关键作用,阐明流感毒株的糖基化谱是开发改良疫苗的要求。病毒 RNA 的基于序列的分析为糖基化修饰在改变毒力和致病性方面的作用提供了重要的见解。尽管如此,这种基于序列的方法只能预测潜在的糖基化位点。由于实验挑战,仅对少数几个毒株进行了预测糖基化位点的实验验证。在此,我们利用 HCD/CID-MS/MS 串联质谱法对鸡蛋中生长的 H1N1 参考株(A/New Caledonia/20/1999)的 HA 进行了位点特异性的糖基化谱分析。我们通过一级序列分析实验证实了糖基化位点的占据情况,并确定了糖链结构的异质性。该蛋白茎部(N28、N40、N304 和 N498)的四个糖基化序列和球状头部(N71、N104、N142 和 N177)的四个糖基化序列被占据。我们的结果揭示了广泛的聚糖微观异质性,即在每个糖基化位点上存在着大量不同的聚糖组成。该方法可应用于其他病毒的特征描述,特别是不同的流感株,以更好地了解糖基化对生物活性的影响,并有助于流感疫苗的改进。