Suppr超能文献

2L-PCA:一种用于定量药物设计的两级主成分分析仪及其应用

2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.

作者信息

Du Qi-Shi, Wang Shu-Qing, Xie Neng-Zhong, Wang Qing-Yan, Huang Ri-Bo, Chou Kuo-Chen

机构信息

State Key Laboratory of China for Biomass Energy Enzyme Technology, National Engineering Research Center of China for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China.

Gordon Life Science Institute, Boston, MA 02478, USA.

出版信息

Oncotarget. 2017 Aug 1;8(41):70564-70578. doi: 10.18632/oncotarget.19757. eCollection 2017 Sep 19.

Abstract

A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.

摘要

基于主成分分析(PCA)方法提出了一种两级主成分预测器(2L-PCA)。它可用于定量分析各种化合物和肽的功能或成为有用药物的潜力。一个级别用于处理药物分子的物理化学性质,而另一个级别用于处理其结构片段。该预测器具有自学习和反馈功能,可自动提高其准确性。预计2L-PCA将成为在药物开发过程中及时提供各种有用线索的非常有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55f7/5642577/3574f528b4ed/oncotarget-08-70564-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验