Suppr超能文献

基于两种暗表面等离子体激元的低激光阈值且可广泛调谐的表面等离激元激射器

A low lasing threshold and widely tunable spaser based on two dark surface plasmons.

作者信息

Huo Yanyan, Jia Tianqing, Ning Tingyin, Tan Chaohua, Jiang Shouzhen, Yang Cheng, Jiao Yang, Man Baoyuan

机构信息

Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.

State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai, 200062, P.R. China.

出版信息

Sci Rep. 2017 Oct 19;7(1):13590. doi: 10.1038/s41598-017-12463-8.

Abstract

We theoretically demonstrate a low threshold and widely tunable spaser based on a plasmonic nanostructure consisting of two sets of disk-rings (TSDR). The TSDR nanostructure supports two dark surface plasmons (SPs), which are excited simultaneously by two bright SPs at Fano dips. The two dark SPs support lower effective mode volume, higher quality factor and higher Purcell factors. When the dark SPs serve as the pumping and lasing mode of a spaser, the spaser has a lower lasing threshold, a higher pump absorption efficiency and a lower threshold absorbed pump power than the spaser based on a bright SP. In addition, the lasing and pumping wavelengths of the spaser proposed in this article can each be tuned over a very wide wavelength range. Our results should be significant for the development of spasers.

摘要

我们从理论上证明了一种基于由两组盘环(TSDR)组成的等离子体纳米结构的低阈值且可广泛调谐的表面等离激元激射器(spaser)。TSDR纳米结构支持两种暗表面等离激元(SPs),它们在法诺凹陷处被两种亮SPs同时激发。这两种暗SPs具有更低的有效模式体积、更高的品质因数和更高的珀塞尔因子。当暗SPs用作spaser的泵浦和激射模式时,与基于亮SP的spaser相比,该spaser具有更低的激射阈值、更高的泵浦吸收效率和更低的阈值吸收泵浦功率。此外,本文提出的spaser的激射波长和泵浦波长均可在非常宽的波长范围内进行调谐。我们的结果对于spaser的发展应该具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/399b/5648854/f64eaccfe9f1/41598_2017_12463_Fig1_HTML.jpg

相似文献

1
A low lasing threshold and widely tunable spaser based on two dark surface plasmons.
Sci Rep. 2017 Oct 19;7(1):13590. doi: 10.1038/s41598-017-12463-8.
2
Lasing Spaser in Photonic Crystals.
ACS Omega. 2021 Feb 3;6(6):4417-4422. doi: 10.1021/acsomega.0c05813. eCollection 2021 Feb 16.
3
Spaser operation below threshold: autonomous vs. driven spasers.
Opt Express. 2015 Aug 24;23(17):21983-93. doi: 10.1364/OE.23.021983.
4
Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate.
ACS Nano. 2018 Apr 24;12(4):3865-3874. doi: 10.1021/acsnano.8b01206. Epub 2018 Apr 16.
5
Free electrons excited SPASER.
Opt Express. 2018 Nov 26;26(24):31402-31412. doi: 10.1364/OE.26.031402.
7
Ten years of spasers and plasmonic nanolasers.
Light Sci Appl. 2020 May 25;9:90. doi: 10.1038/s41377-020-0319-7. eCollection 2020.
8
Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons.
ACS Nano. 2021 Jun 22;15(6):9935-9944. doi: 10.1021/acsnano.1c01338. Epub 2021 May 24.
9
Loss compensation by spasers in plasmonic systems.
Opt Express. 2013 Jun 3;21(11):13467-78. doi: 10.1364/OE.21.013467.
10
Imaging the dark emission of spasers.
Sci Adv. 2017 Apr 14;3(4):e1601962. doi: 10.1126/sciadv.1601962. eCollection 2017 Apr.

引用本文的文献

1
Nanolasers: More than a decade of progress, developments and challenges.
Nanophotonics. 2024 Apr 15;13(15):2707-2739. doi: 10.1515/nanoph-2023-0369. eCollection 2024 Jul.
2
A merged lattice metal nanohole array based dual-mode plasmonic laser with an ultra-low threshold.
Nanoscale Adv. 2021 Dec 10;4(3):801-813. doi: 10.1039/d1na00402f. eCollection 2022 Feb 1.

本文引用的文献

1
Novel Lasers Based on Resonant Dark States.
Phys Rev Lett. 2017 Feb 17;118(7):073901. doi: 10.1103/PhysRevLett.118.073901.
2
Lasing in dark and bright modes of a finite-sized plasmonic lattice.
Nat Commun. 2017 Jan 3;8:13687. doi: 10.1038/ncomms13687.
3
Real-time tunable lasing from plasmonic nanocavity arrays.
Nat Commun. 2015 Apr 20;6:6939. doi: 10.1038/ncomms7939.
4
A room temperature low-threshold ultraviolet plasmonic nanolaser.
Nat Commun. 2014 Sep 23;5:4953. doi: 10.1038/ncomms5953.
5
All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing.
Nano Lett. 2014 Aug 13;14(8):4381-8. doi: 10.1021/nl501273u. Epub 2014 Jul 22.
6
Wavelength-tunable spasing in the visible.
Nano Lett. 2013 Sep 11;13(9):4106-12. doi: 10.1021/nl4015827. Epub 2013 Aug 9.
7
Lasing action in strongly coupled plasmonic nanocavity arrays.
Nat Nanotechnol. 2013 Jul;8(7):506-11. doi: 10.1038/nnano.2013.99. Epub 2013 Jun 16.
8
Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity.
Sci Rep. 2013;3:1241. doi: 10.1038/srep01241. Epub 2013 Feb 7.
10
Multiplexed and electrically modulated plasmon laser circuit.
Nano Lett. 2012 Oct 10;12(10):5396-402. doi: 10.1021/nl302809a. Epub 2012 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验