文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut.

作者信息

Hemsworth Glyn R, Thompson Andrew J, Stepper Judith, Sobala Łukasz F, Coyle Travis, Larsbrink Johan, Spadiut Oliver, Goddard-Borger Ethan D, Stubbs Keith A, Brumer Harry, Davies Gideon J

机构信息

Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK.

School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.

出版信息

Open Biol. 2016 Jul;6(7). doi: 10.1098/rsob.160142.


DOI:10.1098/rsob.160142
PMID:27466444
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4967831/
Abstract

The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/2d69c276880a/rsob-6-160142-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/558002da5a4a/rsob-6-160142-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/d4258b856e20/rsob-6-160142-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/eb584d26ff46/rsob-6-160142-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/894421b80e05/rsob-6-160142-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/819f72403b42/rsob-6-160142-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/2d69c276880a/rsob-6-160142-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/558002da5a4a/rsob-6-160142-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/d4258b856e20/rsob-6-160142-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/eb584d26ff46/rsob-6-160142-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/894421b80e05/rsob-6-160142-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/819f72403b42/rsob-6-160142-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78f/4967831/2d69c276880a/rsob-6-160142-g6.jpg

相似文献

[1]
Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut.

Open Biol. 2016-7

[2]
Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.

mBio. 2016-4-26

[3]
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.

Nature. 2014-1-19

[4]
Cell Surface Xyloglucan Recognition and Hydrolysis by the Human Gut Commensal Bacteroides uniformis.

Appl Environ Microbiol. 2022-1-11

[5]
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut to Polysaccharide Side Chain Diversity.

Appl Environ Microbiol. 2019-10-1

[6]
A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus.

J Mol Biol. 2019-1-19

[7]
Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut .

mBio. 2020-4-7

[8]
A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus.

Mol Microbiol. 2014-10

[9]
Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation.

FEBS J. 2016-5

[10]
Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus.

Microbiol Spectr. 2021-12-22

引用本文的文献

[1]
Characterization of glycoside hydrolases involved in xyloglucan degradation in the thermophilic bacterium Thermotoga maritima.

Sci Rep. 2025-6-6

[2]
A functionally augmented carbohydrate utilization locus from herbivore gut microbiota fueled by dietary β-glucans.

NPJ Biofilms Microbiomes. 2024-10-14

[3]
Identification and Characterization of Novel Intracellular α-Xylosidase in .

J Appl Glycosci (1999). 2023-12-20

[4]
The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan.

New Phytol. 2023-12

[5]
Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review.

Front Nutr. 2022-9-28

[6]
The evolutionary advantage of an aromatic clamp in plant family 3 glycoside exo-hydrolases.

Nat Commun. 2022-9-23

[7]
Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties.

ISME J. 2022-9

[8]
Relandscaping the Gut Microbiota with a Whole Food: Dose-Response Effects to Common Bean.

Foods. 2022-4-15

[9]
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides.

Nat Commun. 2022-2-2

[10]
Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions.

Cell Host Microbe. 2022-2-9

本文引用的文献

[1]
Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.

mBio. 2016-4-26

[2]
Learning from microbial strategies for polysaccharide degradation.

Biochem Soc Trans. 2016-2

[3]
Glycan complexity dictates microbial resource allocation in the large intestine.

Nat Commun. 2015-6-26

[4]
Fecal microbiota transplantation for Clostridium difficile infection: back to the future.

Expert Opin Biol Ther. 2015-7

[5]
Antibiotics, pediatric dysbiosis, and disease.

Cell Host Microbe. 2015-5-13

[6]
High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-L-arabinofuranosidase activity.

Acta Crystallogr F Struct Biol Commun. 2015-3

[7]
Species-specific dynamic responses of gut bacteria to a mammalian glycan.

J Bacteriol. 2015-5

[8]
Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.

Nature. 2015-1-8

[9]
The intestinal microbiota: its role in health and disease.

Eur J Pediatr. 2015-2

[10]
Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature.

Carbohydr Res. 2015-1-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索