Suppr超能文献

无毒还原氧化石墨烯蛋白纳米框架的制备及其作为抗菌涂层在生物医学中的应用

Fabrication of Nontoxic Reduced Graphene Oxide Protein Nanoframework as Sustained Antimicrobial Coating for Biomedical Application.

机构信息

Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Reserach Institute (CLRI) , Chennai 600020, India.

Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001, India.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38255-38269. doi: 10.1021/acsami.7b11203. Epub 2017 Oct 30.

Abstract

Bacterial colonization on medical devices is a major concern in the healthcare industry. In the present study, we report synthesis of environmental sustainable reduced graphene oxide (rGO) on the large scale through biosynthetic route and its potential application for antibacterial coating on medical devices. HRTEM image depicts formation of graphene nanosheet, while DLS and ζ potential studies reveal that in aqueous medium the average hydrodynamic size and surface charge of rGO are 4410 ± 116 nm and -25.2 ± 3.2 mV, respectively. The Raman, FTIR, and XPS data suggest in situ conjugation of protein with rGO. The as-synthesized rGO protein nanoframework exhibits dose-dependent antibacterial activity and potential of killing of 94% of Escherichia coli when treated with 80 μg/mL of rGO for 4 h. The hemolytic and cytotoxicity studies demonstrate that rGO protein nanoframework is highly biocompatible at the same concentration showing significant antimicrobial properties. The rGO coated on the glass surface obtained through covalent bonding exhibits potent antibacterial activity. Antibacterial mechanism further demonstrates that rGO-protein nanoframework in dispersed state (rGO solution) exerts bactericidal effect through physical disruption accompanied by ROS-mediated biochemical responses. The rGO subsequently entering into the cytoplasm through the damaged membrane causes metabolic imbalance in the cells. In sharp contrast, physical damage of the cell membrane is the dominant antibacterial mechanism of rGO in the immobilized state (rGO coated glass). The obtained results help indepth understanding of the antibacterial mechanism of the biosynthesized rGO and a novel way to develop nontoxic antibacterial coating on medical devices to prevent bacterial infection.

摘要

医疗器械上的细菌定植是医疗行业的一个主要关注点。在本研究中,我们报告了通过生物合成途径大规模合成环境可持续的还原氧化石墨烯(rGO)及其在医疗器械抗菌涂层方面的潜在应用。HRTEM 图像描述了石墨烯纳米片的形成,而 DLS 和 ζ 电位研究表明,在水介质中,rGO 的平均水动力粒径和表面电荷分别为 4410±116nm 和-25.2±3.2mV。拉曼、傅里叶变换红外和 XPS 数据表明,蛋白质与 rGO 发生了原位共轭。所合成的 rGO 蛋白纳米框架表现出剂量依赖性的抗菌活性,当用 80μg/mL 的 rGO 处理 4 小时时,对大肠杆菌的杀伤率达到 94%。溶血和细胞毒性研究表明,rGO 蛋白纳米框架在相同浓度下具有高度的生物相容性,表现出显著的抗菌特性。通过共价键合在玻璃表面上涂覆的 rGO 表现出很强的抗菌活性。抗菌机制进一步表明,在分散状态(rGO 溶液)下,rGO-蛋白纳米框架通过伴随 ROS 介导的生化反应的物理破坏发挥杀菌作用。随后,rGO 通过受损的细胞膜进入细胞质,导致细胞代谢失衡。相比之下,在固定状态(涂覆 rGO 的玻璃)下,rGO 细胞膜的物理损伤是其主要的抗菌机制。研究结果有助于深入了解生物合成 rGO 的抗菌机制,并为开发用于医疗器械的无毒抗菌涂层提供了一种新方法,以防止细菌感染。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验