Suppr超能文献

扩散率的上限

Upper Bound on Diffusivity.

作者信息

Hartman Thomas, Hartnoll Sean A, Mahajan Raghu

机构信息

Department of Physics, Cornell University, Ithaca, New York 14850, USA.

Department of Physics, Stanford University, Stanford, California 94305, USA.

出版信息

Phys Rev Lett. 2017 Oct 6;119(14):141601. doi: 10.1103/PhysRevLett.119.141601. Epub 2017 Oct 2.

Abstract

The linear growth of operators in local quantum systems leads to an effective light cone even if the system is nonrelativistic. We show that the consistency of diffusive transport with this light cone places an upper bound on the diffusivity: D≲v^{2}τ_{eq}. The operator growth velocity v defines the light cone, and τ_{eq} is the local equilibration time scale, beyond which the dynamics of conserved densities is diffusive. We verify that the bound is obeyed in various weakly and strongly interacting theories. In holographic models, this bound establishes a relation between the hydrodynamic and leading nonhydrodynamic quasinormal modes of planar black holes. Our bound relates transport data-including the electrical resistivity and the shear viscosity-to the local equilibration time, even in the absence of a quasiparticle description. In this way, the bound sheds light on the observed T-linear resistivity of many unconventional metals, the shear viscosity of the quark-gluon plasma, and the spin transport of unitary fermions.

摘要

即使系统是非相对论性的,局部量子系统中算符的线性增长也会导致有效的光锥。我们表明,扩散输运与该光锥的一致性对扩散系数给出了一个上限:D≲v²τeq。算符增长速度v定义了光锥,而τeq是局部平衡时间尺度,超过这个时间尺度,守恒密度的动力学就是扩散性的。我们验证了在各种弱相互作用和强相互作用理论中这个上限都是成立的。在全息模型中,这个上限建立了平面黑洞的流体动力学和主导非流体动力学准正则模之间的关系。我们的上限将包括电阻率和剪切粘度在内的输运数据与局部平衡时间联系起来,即使在没有准粒子描述的情况下也是如此。通过这种方式,该上限为许多非常规金属中观测到的T线性电阻率、夸克-胶子等离子体的剪切粘度以及幺正费米子的自旋输运提供了启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验