Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Lett. 2015 Apr 17;114(15):157201. doi: 10.1103/PhysRevLett.114.157201. Epub 2015 Apr 13.
In nonrelativistic quantum theories with short-range Hamiltonians, a velocity v can be chosen such that the influence of any local perturbation is approximately confined to within a distance r until a time t∼r/v, thereby defining a linear light cone and giving rise to an emergent notion of locality. In systems with power-law (1/r^{α}) interactions, when α exceeds the dimension D, an analogous bound confines influences to within a distance r only until a time t∼(α/v)logr, suggesting that the velocity, as calculated from the slope of the light cone, may grow exponentially in time. We rule out this possibility; light cones of power-law interacting systems are bounded by a polynomial for α>2D and become linear as α→∞. Our results impose strong new constraints on the growth of correlations and the production of entangled states in a variety of rapidly emerging, long-range interacting atomic, molecular, and optical systems.
在具有短程哈密顿量的非相对论量子理论中,可以选择一个速度 v,使得任何局部扰动的影响大约都被限制在距离 r 内,直到时间 t∼r/v,从而定义了一个线性光锥,并产生了一种涌现的局域性概念。在具有幂律(1/r^{α})相互作用的系统中,当 α 超过维度 D 时,类似的界将影响限制在距离 r 内,直到时间 t∼(α/v)logr,这表明可以根据光锥的斜率计算出速度,它可能随时间呈指数增长。我们排除了这种可能性;幂律相互作用系统的光锥在 α>2D 时受到多项式的限制,并在 α→∞时变为线性。我们的结果对各种新兴的、长程相互作用的原子、分子和光学系统中的相关性增长和纠缠态产生施加了严格的新限制。